- 【Python】已解决:ERROR: Could not find a version that satisfies the requirement cv2 (from versions: none)
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- (Aliyun AI ACP 04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述
North_D
人工智能基础知识点人工智能深度学习学习自然语言处理迁移学习python神经网络
文章目录阿里云人工智能工程师ACP认证考试知识点辅助阅读(AliyunAIACP04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述I.深度学习算法1️⃣前馈神经网络(FFNs)详解2️⃣卷积神经网络(CNNs)探秘II.增强学习探索3️⃣增强学习基础与决策过程4️⃣常见增强学习算法剖析III.迁移学习实践5️⃣迁移学习基本原理与应用阿里云人工智能工程师ACP认证考试知识点辅
- AI大模型探秘:核心能力与应用场景深度解析
程序员辣条
人工智能javaAI大模型大模型spring
AI大模型是什么通过概念考察的方式,拆开来了解AI大模型。AI:包含很多术语,如:模式识别、自然语言处理、神经网络、机器学习、深度学习、强化学习、人类反馈强化学习等。类比:AI是电力–吴恩达。就像电力技术,是一种通用技术,对很多设备起作用,同样的AI可以赋能各种场景。大模型:把LM比作人的大脑。大参数大规模。参数就是脑细胞,脑细胞越多通常这个人越聪明,参数越多的LM通常越智能。分类语言大模型:Ch
- Halcon基础(3)打开一张图像的几种方式
打鱼的渔夫wh
#halcon
读取图像:read_image打开图像窗口:dev_open_window获取图像尺寸:get_image_size显示图像:dev_display设置窗口句柄:dev_set_window合适的窗口:dev_open_window_fit_image(dev_open_window_fite_size)read_image(Image,'1')*打开图像窗口dev_open_window(0,0
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- 算法问题整理(二)
分享总结快乐
算法
网络资料整理个人学习,感谢各位大神!(若侵则删)问题10:卷积-目标检测系列问题参考:40+目标检测网络架构大盘点!从基础架构ResNet到最强检测器Yolov7再到最新部署神器GhostNetV2【深度学习】YOLO检测器家族所有版本(2024最新汇总、详细介绍)_yolo各个版本-CSDN博客YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍!!-腾讯云开发者社区-腾讯云关键挑战:类
- 探秘 GitCode 上的开源项目:91pron - AI 引擎驱动的智能视频处理工具
毕艾琳
探秘GitCode上的开源项目:91pron-AI引擎驱动的智能视频处理工具去发现同类优质开源项目:https://gitcode.com/项目简介在平台上,有一个名为的开源项目,它是一个利用人工智能技术进行智能视频处理的应用。虽然项目的名称可能有些隐晦,但其核心功能却极具实用价值,特别是对于那些需要自动化处理大量视频数据的工作。技术分析1.AI模型应用91pron使用了深度学习模型,尤其是计算机
- 大模型的底层逻辑及Transformer架构
搏博
transformer架构深度学习机器学习人工智能
一、大模型的底层逻辑1.数据驱动大模型依赖海量的数据进行训练,数据的质量和数量直接影响模型的性能。通过大量的数据,模型能够学习到丰富的模式和规律,从而更好地处理各种任务。2.深度学习架构大模型基于深度学习技术,通常采用多层神经网络进行特征学习与抽象。其中,Transformer架构是目前主流的大模型架构,它通过自注意力机制和前馈神经网络来处理输入数据。这种架构能够高效地处理序列数据,如文本。3.自
- 【深度学习】权重衰减
熙曦Sakura
深度学习深度学习人工智能
权重衰减前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。回想一下,在多项式回归的例子中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技
- AIGC从入门到实战:基于大模型的人工智能应用的涌现和爆发
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的新纪元:AIGC的崛起近年来,人工智能(AI)领域经历了前所未有的发展,其中AIGC(AIGeneratedContent,人工智能生成内容)的崛起尤为引人注目。AIGC借助深度学习模型,能够生成逼真的图像、视频、音频、文本等内容,为人类的创造力和生产力带来了革命性的改变。1.2大模型:AIGC的基石AIGC的核心驱动力在于大规模预训练模型(简称“大模型”)。这些模型拥
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- 【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍
GoAI
深入浅出LLM深入浅出AI大模型书生人工智能LLMllama
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·浦语大模
- 深度学习实战一:线性回归(基于Pytorch,含数据和详细注释)
若北辰
Python深度学习深度学习线性回归pytorch
线性回归1、回归的概念2、回归的分类3、线性回归4、代码实现补充说明1、回归的概念回归的本来意思是,无论父母的身高多高或多矮,小孩的身高总是趋向于回到均值附近,也就是回归趋向均值!,这就是回归分析的本质2、回归的分类线性回归(又分为一元线性回归和多元线性回归)广义线性回归(又分为逻辑回归和对数回归)非线性回归3、线性回归线性回归是深度学习中最基础、最简单的模型。虽然简单,但是跟大多数监督学习算法的
- MATLAB机器学习、深度学习
Yolo566Q
机器学习matlabmatlab机器学习深度学习
目录第一章MATLAB图像处理基础第二章BP神经网络及其在图像处理中的应用第三章卷积神经网络及其在图像处理中的应第四章迁移学习算法及其在图像处理中的应用第五章生成式对抗网络(GAN)及其在图像处理中的应用第六章目标检测YOLO模型及其在图像处理中的应用第七章讨论与答疑近年来,随着无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是在计算机
- 机器学习在金融领域的应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习在金融领域的应用1.背景介绍1.1金融行业面临的挑战1.1.1海量数据处理1.1.2实时风险监控1.1.3个性化服务需求1.2机器学习的兴起1.2.1大数据时代的到来1.2.2计算能力的提升1.2.3算法的不断创新2.核心概念与联系2.1机器学习的定义与分类2.1.1有监督学习2.1.2无监督学习2.1.3强化学习2.2机器学习与人工智能、深度学习的关系2.2.1人工智能的发展历程2.2.
- PyTorch深度学习实战(2)——PyTorch快速入门
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
PyTorch的简洁设计使得它易于入门,在深入介绍PyTorch之前,本文先介绍一些PyTorch的基础知识,以便读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。1TensorTensor是PyTorch中最重要的数据结构,它可以是一个数(标量)、一维数组(向量)、二维数组(如矩阵、黑白图片等)或者更高维的数组(如彩色图片、视频等)。Tensor与NumPy
- NVIDIA的算力支持
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
NVIDIA的算力支持关键词:NVIDIA,GPU,Turing架构,RTX,AI,AIoT,云计算,大数据,深度学习1.背景介绍NVIDIA作为全球领先的图形处理芯片制造商,近年来在人工智能领域也取得了显著的进展。NVIDIA的GPU(图形处理器)因其强大的并行计算能力,成为了深度学习和人工智能(AI)领域的主流硬件。NVIDIA的Turing架构引入了更强的张量计算能力,使得深度学习任务能够更
- 基于深度学习的文本情感分析
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于深度学习的文本情感分析关键词:深度学习、文本情感分析、自然语言处理、卷积神经网络、循环神经网络、BERT、情感分类、情绪识别1.背景介绍文本情感分析(TextSentimentAnalysis),又称情感计算(SentimentComputing),是自然语言处理(NLP)领域的重要研究方向之一。它旨在从文本数据中识别和理解作者表达的情感倾向,例如正面、负面或中立。随着互联网和社交媒体的蓬勃发
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 人工智能基础知识速成 - 机器学习、深度学习算法原理及其实际应用案例
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
一、机器学习概念与原理什么是机器学习?机器学习是人工智能的一个分支,通过从数据中学习和改进算法,使计算机系统在没有明确编程的情况下也能够自动地学习和改进。机器学习是一种实现人工智能的技术手段,能够让计算机“自我学习”,从而实现更准确的预测和决策。机器学习的基本原理机器学习的基本原理是通过构建数学模型,使用大量的数据进行训练,使得模型能够智能地预测和决策。在机器学习中,常用的模型包括线性回归、逻辑回
- 【LangChain编程:从入门到实践】代码实践
AI天才研究院
计算大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】代码实践1.背景介绍1.1人工智能的发展历程人工智能(ArtificialIntelligence,AI)是当代科技领域最具革命性和颠覆性的技术之一。自20世纪50年代诞生以来,AI经历了起伏跌宕的发展历程。在早期,AI主要集中于基于规则的系统和专家系统,试图模拟人类的推理过程。然而,随着大数据时代的到来和计算能力的飞速提升,机器学习和深度学习技术开始占据主
- 因果推断与机器学习—因果表征学习与泛化能力
樱花的浪漫
因果推断机器学习学习人工智能深度学习自然语言处理计算机视觉
近十年来,深度学习在多个领域取得了巨大成功,包括机器视觉、自然语言处理、语音识别和生物信息等。这些成功为机器学习技术的进一步发展和应用奠定了基础。表征学习是深度学习的核心技术之一。在机器学习问题中,其主要目的是从观测到的低级变量中提取信息,进而学习到能够准确预测目标变量的高级变量。这种从低层次到高层次变量的学习过程,有助于模型更好地理解数据和进行预测。以德国马克斯-普朗克研究所的BernhardS
- 基于深度学习的植物病害检测系统
A等天晴
计算机视觉深度学习人工智能
引言背景介绍植物病害对农业生产的影响不容忽视。随着全球人口的增长和气候变化的影响,农作物病害问题变得更加严峻。传统的植物病害检测方法往往依赖于人工检测,不仅耗时费力,而且对检测者的专业知识要求较高。深度学习技术,尤其是YOLO(YouOnlyLookOnce)模型,在图像识别和目标检测领域取得了显著的成果。YOLO模型可以在实时情况下检测并识别图像中的多个目标,为植物病害的快速检测提供了新的途径。
- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- AI 图像生成器,如何使用 Janus-Pro 和 Janus, Deepseek 的 Janus-Pro、Janus 和其他领先工具的比较
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekjanuspro
介绍人工智能(AI)彻底改变了数字艺术和设计领域,使创建高质量图像变得前所未有的简单,而且只需付出最少的努力。人工智能驱动的图像生成器使用深度学习算法将文本描述转换为逼真或艺术化的视觉效果,可满足营销、广告、游戏和内容创作等各种行业的需求。在本综合指南中,我们将探索一些最流行的AI图像生成器,包括DeepSeek的Janus-Pro和Janus,以及DALL·E3、Midjourney、Stabl
- 深度学习篇---深度学习框架图像预处理&各部分组件
Ronin-Lotus
深度学习篇程序代码篇深度学习人工智能Python机器学习pytorchpaddlepaddle深度学习框架
文章目录前言第一部分:图像预处理PaddlePaddle图像预处理PyTorch图像预处理第二部分:框架各部分组件PaddlePaddle1.卷积层(ConvolutionalLayer)2.池化层(PoolingLayer)3.全连接层(FullyConnectedLayer)4.激活函数(ActivationFunction)5.优化器(Optimizer)6.归一化(Normalizatio
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- 基于深度学习的车牌检测识别系统 —— 使用YOLOv5实现车牌检测与识别
2025年数学建模美赛
深度学习YOLO人工智能分类ui
目录引言项目背景与目标1.1项目背景1.2项目目标系统设计与架构2.1系统功能概述2.2系统架构数据准备与处理3.1数据集选择与收集3.2数据标注3.3数据集划分YOLOv5模型训练与优化4.1YOLOv5配置文件4.2安装YOLOv5并开始训练4.3模型评估与优化车牌识别与推理5.1加载模型进行推理5.2UI界面设计总结与展望引言车牌识别(LicensePlateRecognition,LPR)
- 关于大模型 AGI 应知应会_生在AI发展的时代
森焱森
机器人人工智能算法总结科技
在AI时代,大模型和通用人工智能(AGI)正在深刻改变我们的生活和工作方式。以下是一些关于大模型和AGI的关键知识点,帮助我们更好地理解这一技术浪潮。一、大模型的核心概念与特点(一)什么是大模型大模型(LargeLanguageModels,LLMs)是指具有大规模参数和复杂计算结构的深度学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这些模型通过训练海量数据来学习复杂的模式和特
- AI 浪潮席卷中国年,开启科技新春新纪元
芯作者
DD:日记人工智能机器学习
在21世纪的第三个十年,人工智能(AI)技术以前所未有的速度席卷全球,而在东方古国——中国,这股浪潮尤为汹涌澎湃。随着大数据、云计算、深度学习等技术的不断成熟,AI不仅重塑了传统行业的面貌,更在新春佳节这一最具中国特色的时刻,以其独特的方式,开启了科技新春的新纪元。本文将从AI在春节期间的应用、对中国经济的影响、社会文化的变迁、面临的挑战以及未来展望等五个方面,层次分明地探讨这一话题。一、AI在春
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》