- Excel 后缀竟成 “拦路虎”?POI 读取报错原因大揭秘
后端
POI读取excel报错由于有时候上传的是xls文件有时候上传的是xlsx文件,使用POIFSFileSystem来读取文件POIFSFileSystempoifsFileSystem;try{poifsFileSystem=newPOIFSFileSystem(newFileInputStream(file));}catch(IOExceptione){LOGGER.error("openxls
- 如何在DigitalOcean的H100 GPU服务器上运行DeepSeek R1 模型
DO_Community
教程DeepSeekGPUai大语言模型人工智能
在DigitalOcean,我们一直在关注开源大语言模型(LLMs)和商业封闭模型之间差距的不断缩小。其中一个最关键的能力就是“推理”,也就是用合乎逻辑、讲得通的方式思考问题。以前,大语言模型的表现比较单一。只要给它们一个提示,它们就会直接给出答案,根本没有什么“二次思考”的过程,也没有什么机制能让模型在出错时自己纠正。这就让它们在遇到那些指令本身就可能有问题的情况时,很难进行深入推理、提出疑问或
- 面试题之webpack file-loader和url-loader
阿丽塔~
webpack前端node.js面试
在面试中,关于Webpack中file-loader和url-loader的区别是一个常见的问题。file-loader和url-loader的区别1.功能定义file-loader:主要用于处理静态资源文件(如图片、字体等),将其复制到输出目录,并返回文件的URL。适用于较大文件或需要单独存储的资源。url-loader:是file-loader的扩展,它在处理文件时会先判断文件大小。如果文件大
- 首个国产AI编辑器Trace的安装及使用教程
除了编程啥都会
编辑器
关于国产AI编辑器Trace安装教程进入Trace官网,下载适合你系统的安装包。Trace官网https://www.trae.com.cn/download双击安装包进行安装安装完成打开Trace,点击登录登录成功后就可以使用大语言模型进行项目开发了!
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- “大语言模型微调”(Fine-tuning)与“大语言模型应用”(LLM Applications)之间的区别
AI Echoes
人工智能机器学习深度学习
1.概念与定义大语言模型微调微调指的是在一个经过大规模预训练的通用语言模型基础上,利用针对性较强的小规模数据集对模型进行进一步训练,从而使模型在特定领域或任务上表现得更优秀。目标:使模型更好地适应特定任务(如医疗问答、法律咨询、编程辅助等),提高准确性和专业性。方法:可以是全参数微调,也可以采用参数高效微调(如LoRA、Adapter、PrefixTuning等),后者只调整部分参数而保持原有权重
- 大模型GPT辅助学习解释代码-HttpSession 监听器
ahauedu
前沿技术与趋势gpt
本文主题大模型解释代码。最近在接触旧项目代码是往往没有注释,或者是注释和代码对应不上,这样对于了解业务逻辑,以及后期的改造开发造成了很大的困扰。尽然大模型这么强大,我们尝试下用大模型来解释代码。以下是大模型对项目代码中的HttpSession监听器的代码解释,很高效的方式,可以借鉴。代码解析这段代码定义了WebHttpSessionListener类,它是一个HttpSession监听器,用于监听
- 动态规划双剑合璧:C++与Python征服洛谷三大经典DP问题
三流搬砖艺术家
动态规划c++python
动态规划核心思想状态定义→转移方程→边界处理→时空优化本文精选洛谷动态规划题单中三大经典问题,通过C++与Python双语言对比实现,彻底掌握DP精髓!题目一:P1048采药(01背包模板)题目描述在限定时间T内采集草药,每株草药有采集时间time[i]和价值value[i],求最大总价值。解题思路状态定义:dp[j]表示时间j能获得的最大价值转移方程:dp[j]=max(dp[j],dp[j-t
- Java线程池选型指南:高并发场景下的最优配置策略
程序猿小白菜
后端java生态圈java线程池
一、线程池核心参数大白话解析五大核心参数就像餐厅运营团队:核心线程数(corePoolSize):常驻员工(正式工),闲时也不裁员最大线程数(maximumPoolSize):最大用工数(正式工+临时工)队列(workQueue):候客区(排队等待的顾客)存活时间(keepAliveTime):临时工空闲多久后解雇拒绝策略(RejectedExecutionHandler):客满时的处理方案二、J
- 每日面试题-TCP 和 UDP 有什么区别?
晚夜微雨问海棠呀
tcp/ipudp网络协议
TCP(传输控制协议)和UDP(用户数据报协议)是传输层的两大核心协议,主要区别如下:核心差异对比连接模式TCP:面向连接,需通过三次握手建立可靠通道。UDP:无连接,直接发送数据报,无需预先协商。可靠性TCP:提供数据确认、重传、校验和流量控制,确保数据完整有序到达。UDP:不保证可靠性,可能丢包、乱序,无重传机制。传输方式TCP:基于字节流传输,数据按顺序重组(如文件下载)。UDP:基于独立数
- 工业节能新利器:第二类吸收式热泵与MVR热泵深度剖析
CodeJourney.
人工智能算法python
一、引言在全球倡导节能减排、可持续发展的大背景下,工业领域作为能源消耗的“大户”,节能改造显得尤为重要。余热回收作为工业节能的关键环节,不仅能提高能源利用效率,降低生产成本,还能减少环境污染。在众多余热回收技术中,第二类吸收式热泵和MVR热泵凭借其独特的优势,成为工业节能领域的热门选择。深入了解这两种热泵的工作原理、性能特点以及适用场景,对于工业企业科学选择余热回收设备,实现高效节能具有重要意义。
- AI人才争夺战升级、算力投资加码与阿里千亿AI豪赌:重塑未来科技格局的三大核心战场
meisongqing
人工智能科技
2025年3月,全球科技领域最引人注目的动态,莫过于AI人才争夺的白热化、算力投资的规模化竞赛,以及阿里巴巴以3800亿元重注押宝AI的豪赌。这三股力量交织,不仅推动了中国科技产业的深度变革,更预示着一场全球技术话语权的重新洗牌。---一、AI人才争夺战:从“高薪挖角”到“生态争夺”全球AI产业的爆发式增长,使得顶尖人才成为最稀缺的资源。据预测,到2030年,中国AI人才缺口将达400万,而美国A
- 【大模型开发】Megatron-LM 深度解析:原理、应用与代码实现
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习大模型开发HuggingFace大模型生态机器学习Megatron-LM并行训练大模型加速
以下内容将从Megatron-LM的基本原理、应用场景、以及其核心代码和实现逻辑三个方面进行深入剖析,并提供示例代码和详细的注释说明,帮助大家对Megatron-LM有一个较为全面的了解。所有内容基于Megatron-LM官方实现(GitHub:NVIDIA/Megatron-LM),并结合大规模模型训练的关键理念进行介绍。一、Megatron-LM简介Megatron-LM是由NVIDIA开源的
- 【大模型开发】深入解析 DeepSpeed:原理、核心技术与示例代码
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习大模型开发大模型微调deepseekdeepspeedpython人工智能pytorch
深入解析DeepSpeed:原理、核心技术与示例代码DeepSpeed是由微软开源的高性能深度学习训练优化引擎,专注于帮助研究人员和工程团队在分布式环境中高效地训练超大规模模型。其核心目标是提供高吞吐、低内存占用、低成本的分布式训练方案,让数千亿甚至万亿级参数模型的训练成为可能。本文将从DeepSpeed的核心原理、关键组件、代码示例及实现过程详解等方面做详细阐述,帮助读者更好地理解并使用Deep
- 【大模型开发】大模型背后的基础组件与生态概览
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习大模型技术开发与实践大模型开发HuggingFaceDeepSpeed大模型生态机器学习深度学习大模型技术栈
支撑大模型开发与部署的关键组件与生态系统当今大模型(LLM,LargeLanguageModel)在工业与学术界的应用日益广泛,从ChatGPT、BERT到DeepSeek等新兴模型,背后离不开一整套成熟的技术生态和工具链支持。本文将介绍其中几大核心组件和框架,包括HuggingFaceTransformers、DeepSpeed、Megatron-LM,以及其他相关工具和方法,展示它们在训练效率
- 2025 年,微服务架构和大模型能 “玩出” 什么新花样?
字节跳动开源
架构微服务人工智能
2025年开年,DeepSeek开源模型以“低成本、高性能”成功掀起AI平价化浪潮,并以惊人的速度渗透至各个领域。在AI平价化浪潮的推动下,微服务架构正迎来前所未有的变革机遇。微服务架构通过将系统拆解为多个小型、独立的服务,每个服务运行在自己的进程中,负责特定的业务功能。与单体架构相比,微服务架构实现了更高的灵活性、可扩展性和可维护性,这些特性使其成为现代软件开发的首选。然而,随着企业应用规模和复
- HSPF 水文模型建模方法与案例分析实践技术应用-流域划分、河网设置、溶解氧与营养物的模拟、温度模拟、藻类的模拟、温度的模拟
KY_chenzhao
HSPF模型流域
在水文模拟领域,HSPF模型(HydrologicalSimulationProgramFortran)与SWAT模型一样,都是备受瞩目的水文模型软件。HSPF模型因其强大的功能和简便的操作,在全球范围内得到了广泛应用。该模型不仅能够在缺乏测量数据的情况下提供可靠的模拟数据,还能满足不同场景下的水文模拟需求。一、HSPF模型的优势高集成度的前后处理软件:HSPF模型配备了高集成度的前后处理软件,大
- Apipost一站式API工具评测:整合Postman+Swagger+JMeter三大功能,打造全流程开发解决方案
作为一名Java开发者,始终追求开发过程的高效性。使用IntelliJIDEA编写代码只是开始。一般来说,代码完成后,我们会切换到Postman进行API调试。在确保API表现符合预期后,我们会使用Swagger为前端团队生成文档。最后,再使用JMeter进行性能和负载测试,以确保API工作流顺畅且自动化。Apipost=Postman+Swagger+JMeter然而,这种多工具的方法存在诸多挑
- 领域大模型之微调技术和最佳实践
程序员莫玛
人工智能深度学习语言模型金融
BERT和GPT-3等语言模型针对语言任务进行了预训练。微调使它们适应特定领域,如营销、医疗保健、金融。在本指南中,您将了解LLM架构、微调过程以及如何为NLP任务微调自己的预训练模型。-介绍-大型语言模型(LLM)的特别之处可以概括为两个关键词——大型和通用。“大”是指它们训练的海量数据集及其参数的大小,即模型在训练过程中学习的记忆和知识;“通用”意味着他们具有广泛的语言任务能力。更明确地说,L
- 利用AI大模型,破解医疗数据困境_医疗ai大模型
喝不喝奶茶丫
人工智能语言模型大模型深度学习AI大模型AI机器学习
随着AI技术飞跃,医疗基础模型在2023年逐渐涌现。它们不仅能深刻理解临床数据,还能生成富有洞见的医疗知识。从影像诊断到药物研发,这些模型正逐步改写医疗服务的未来。然而,数据量有限、标注成本高、多模态数据融合困难等挑战仍旧存在。如何在确保隐私的前提下,高效利用有限的医疗数据?医疗数据困境新解:基础模型医疗诊断对减少疾病发生、降低死亡率、提高民众健康水平具有重要意义。高质量的医疗数据在其中扮演了不可
- LangChain大模型应用开发指南-大模型Memory不止于对话
喝不喝奶茶丫
langchain人工智能大模型大模型应用AI大模型Memory大语言模型
上节课,我我为您介绍了LangChain中最基本的链式结构,以及基于这个链式结构演化出来的ReAct对话链模型。今天我将由简入繁,为大家拆解LangChain内置的多种记忆机制。本教程将详细介绍这些记忆组件的工作原理、特性以及使用方法。【一一AGI大模型学习所有资源获取处一一】①人工智能/大模型学习路线②AI产品经理资源合集③200本大模型PDF书籍④超详细海量大模型实战项目⑤LLM大模型系统学习
- leetcode 贪心算法
gufly-
leetcode贪心算法算法
刷题记录以局部最优推出整体最优,且想不到反例,则可以尝试贪心算法455.分发饼干从后向前遍历孩子数组,用大饼干满足胃口大,并统计满足小孩数量classSolution(object):deffindContentChildren(self,g,s):g.sort()s.sort()res=0ind=len(s)-1foriinrange(len(g)-1,-1,-1):ifind>=0ands[i
- 简单区分 五大算法分析策略(分治、动态规划、贪心、回溯、分支限界)
土味儿~
数据结构与算法数据结构与算法
一、分治法1、设计思想将一个难以直接解决的大问题,分割成k个规模较小的子问题,这些子问题相互独立,且与原问题相同,然后各个击破,分而治之。2、递归算法分治法常常与递归结合使用:通过反复应用分治,可以使子问题与原问题类型一致而规模不断缩小,最终使子问题缩小到很容易求出其解,由此自然导致递归算法。3、子问题规模根据分治法的分割原则,应把原问题分割成多少个子问题才比较适宜?每个子问题是否规模相同或怎样才
- 数巅科技携手智慧足迹深耕行业大模型应用
Dipeak数巅科技
人工智能大数据商业智能BI
近日,数巅科技与智慧足迹数据科技有限公司(智慧足迹)达成战略合作,双方将联合开展AI大模型应用研发,提供定制化行业解决方案,以技术创新推动AI大模型应用创新,助力企业数智化转型。智慧足迹拥有丰富的系统集成经验,数巅科技拥有领先的AI大模型应用技术能力和专业知识,双方将充分发挥各自优势,在AI大模型应用领域展开深度合作:双方将联合研发企业级大模型场景化应用。数巅科技将提供全面的技术支持,包括但不限于
- 如何对大模型进行微调?从原理到实战全解析
挣扎与觉醒中的技术人
人工智能外包转型集成学习chatgptgpt-3软件工程
随着大语言模型(LLM)的快速发展,微调(Fine-tuning)已成为将通用模型转化为垂直领域专家的核心技术。本文将从原理、方法到实战步骤,结合OpenAI、HuggingFace等平台的最佳实践,详解大模型微调全流程。文末附赠独家资料包,助你快速上手!一、什么是大模型微调?微调指在预训练大模型(如GPT-3.5、LLaMA)的基础上,使用特定领域的数据进行二次训练,使模型适应新任务或领域需求。
- 【技术干货】三大常见网络攻击类型详解:DDoS/XSS/中间人攻击,原理、危害及防御方案
挣扎与觉醒中的技术人
网络安全入门及实战ddosxss前端网络
1.DDoS攻击1.1什么是DDoS攻击?DDoS(DistributedDenialofService,分布式拒绝服务攻击)通过操控大量“僵尸设备”(Botnet)向目标服务器发送海量请求,耗尽服务器资源(带宽、CPU、内存),导致正常用户无法访问服务。1.2攻击原理与分类流量型攻击:如UDP洪水、ICMP洪水,通过发送大量无效数据包占用带宽。协议型攻击:如SYN洪水攻击,利用TCP三次握手漏洞
- 《Python实战进阶》No20: 网络爬虫开发:Scrapy框架详解
带娃的IT创业者
Python实战进阶python爬虫scrapy
No20:网络爬虫开发:Scrapy框架详解摘要本文深入解析Scrapy核心架构,通过中间件链式处理、布隆过滤器增量爬取、Splash动态渲染、分布式指纹策略四大核心技术,结合政府数据爬取与动态API逆向工程实战案例,构建企业级爬虫系统。提供完整代码与运行结果,包含法律合规设计与反爬对抗方案。Scrapy是适用于Python的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中
- 【带你 langchain 双排系列教程】8.LangChain开发Agent智能体:从入门到实战
夜里慢慢行456
双排人工智能pythonlangchain
一、什么是LangChain?LangChain是一个专为构建大模型应用设计的开发框架,其模块化设计和丰富的工具链让智能体开发更高效。相比传统开发,LangChain提供以下核心优势:内置Agent模板:快速实现工具调用、多轮对话、记忆管理。无缝对接主流大模型:支持OpenAI、ChatGLM、DeepSeek等。灵活可扩展:通过Chains组合实现复杂业务逻辑。二、快速开始:环境搭建与基础配置1
- 第二章:标签大狂欢:从基础到变形
我自纵横2023
HTML教程前端htmlxml
第二章:标签大狂欢:从基础到变形2.1文本标签的魔法咒语一、专治「文字乱跑症」的标签想象一下,你刚写了一段优美的文字,结果浏览器像个熊孩子一样把它们堆成一团——这时候就需要标签施展「定身咒」了!作用:把文字关进段落牢房,强制换行并保持间距。语法:这是一段被温柔包裹的文字搞笑案例:程序员的浪漫:你是我永不溢出的栈,是我命中注定的异常捕获。(悄悄说:是换行符,但才是段落的正确打开方式哦!)二、标题标签
- 大语言模型原理基础与前沿 挑战与机遇
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿挑战与机遇1.背景介绍大语言模型(LargeLanguageModels,LLMs)是近年来人工智能领域的一个重要突破。它们通过深度学习技术,特别是基于变换器(Transformer)架构的模型,能够在自然语言处理(NLP)任务中表现出色。大语言模型的出现不仅推动了学术研究的发展,也在实际应用中展现了巨大的潜力。1.1大语言模型的起源大语言模型的起源可以追溯到早期的统计语言
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置