从零开始学python数据分析-从零开始学Python数据分析与挖掘 PDF 扫描版

给大家带来的一篇关于数据挖掘相关的电子书资源,介绍了关于Python、数据分析、数据挖掘方面的内容,本书是由清华大学出版社出版,格式为PDF,资源大小67.8 MB,刘顺祥编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.5。

内容介绍

从零开始学Python数据分析与挖掘

本书以Python 3版本作为数据分析与挖掘实战的应用工具,从Pyhton的基础语法开始,陆续介绍有关数值计算的Numpy、数据处理的Pandas、数据可视化的Matplotlib和数据挖掘的Sklearn等内容。全书共涵盖15种可视化图形以及10个常用的数据挖掘算法和实战项目,通过本书的学习,读者可以掌握数据分析与挖掘的理论知识和实战技能。本书适于统计学、数学、经济学、金融学、管理学以及相关理工科专业的本科生、研究生使用,也能够提高从事数据咨询、研究或分析等人士的专业水平和技能。

目录

第1章 数据分析与挖掘概述 1

第2章 从收入的预测分析开始 10

第3章 Python快速入门 29

第4章 Python数值计算工具——Numpy 56

第5章 Python数据处理工具——Pandas 76

第6章 Python数据可视化 110

第7章 线性回归预测模型 150

第8章 岭回归与LASSO回归模型 174

第9章 Logistic回归分类模型 190

第10章 决策树与随机森林 208

第11章 KNN模型的应用 233

第12章 朴素贝叶斯模型 253

第13章 SVM模型的应用 272

第14章 GBDT模型的应用 296

第15章 Kmeans聚类分析 326

第16章 DBSCAN与层次聚类分析 345

学习笔记

python微信好友数据分析详解

基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiebaimport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……

Python实现的大数据分析操作系统日志功能示例

本文实例讲述了Python实现的大数据分析操作系统日志功能。分享给大家供大家参考,具体如下: 一 代码 1、大文件切分 import osimport os.pathimport timedef FileSplit(sourceFile, targetFolder): if not os.path.isfile(sourceFile): print(sourceFile, ' does not exist.') return if not os.path.isdir(targetFolder): os.mkdir(targetFolder) tempData = [] number = 1000 fileNum = 1 linesRead = 0 with open(sourceFile, 'r') as srcFile: dataLine = srcFile.readline().strip() while dataLine: for i in range(number): tempData.append(dataLine) dataLine = srcFile.readline() if not dataLine: break desFile = os.path.join(targetFolder, sourceFile[0:-4] + str(fileNum) + '.txt') with open(desFile, 'a+') as f: f.writelines(tempData) tempData = [] fileNum = fileNum + 1if __name_……

详解Python数据分析--Pandas知识点

本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘 1. 重复值的处理 利用drop_duplicates()函数删除数据表中重复多余的记录, 比如删除重复多余的ID. import pandas as pd df = pd.DataFrame({"ID": ["A1000","A1001","A1002", "A1002"], "departmentId": [60001,60001, 60001, 60001]}) df.drop_duplicates() 2. 缺失值的处理 缺失值是数据中因缺少信息而造成的数据聚类, 分组, 截断等 2.1 缺失值产生的原因 主要原因可以分为两种: 人为原因和机械原因. 1) 人为原因: 由于人的主观失误造成数据的缺失, 比如数据录入人员的疏漏; 2) 机械原因: 由于机械故障导致的数据收集或者数据保存失败从而造成数据的缺失. 2.2 缺失值的处理方式 缺失值……

Python数据分析:手把手教你用Pandas生成可视化图表的教程

大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。 作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。 下面,我们总结一下PD库的一些……

以上就是本次介绍的数据挖掘电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对码农之家的支持。

展开 +

收起 -

你可能感兴趣的:(从零开始学python数据分析-从零开始学Python数据分析与挖掘 PDF 扫描版)