社交网络中的图模型经常需要构造一棵树型结构:从一个特定的节点出发,例如,构造mary的朋友以及mary朋友的朋友的一棵树。
为构造这样的一棵树,最简单的方法是使用广度优先算法:
经常使用链表来表示图的节点以及节点之间的链接关系,如
frank -> {mary, jill}
jill -> {frank, bob, james}
mary -> {william, joe, erin}
表示,mary有3个朋友,分别是william,joe和erin
将上述关系形式化表示为
0-> {1, 2} 2-> {3, 4, 5} 1-> {6, 7, 8}
有了上述链表结构,我们可以得到:
单线程的BFS如下:
1、节点对象建模Node.java
import java.util.*; public class Node { public static enum Color { WHITE, GRAY, BLACK }; private final int id; private int parent = Integer.MAX_VALUE; private int distance = Integer.MAX_VALUE; private List<Integer> edges = null; private Color color = Color.WHITE; public Node(int id) { this.id = id; } public int getId() { return this.id; } public int getParent() { return this.parent; } public void setParent(int parent) { this.parent = parent; } public int getDistance() { return this.distance; } public void setDistance(int distance) { this.distance = distance; } public Color getColor() { return this.color; } public void setColor(Color color) { this.color = color; } public List<Integer> getEdges() { return this.edges; } public void setEdges(List<Integer> vertices) { this.edges = vertices; } }
2、BFS算法 Graph.java
import java.util.*; public class Graph { private Map<Integer, Node> nodes; public Graph() { this.nodes = new HashMap<Integer, Node>(); } public void breadthFirstSearch(int source) { // Set the initial conditions for the source node Node snode = nodes.get(source); snode.setColor(Node.Color.GRAY); snode.setDistance(0); Queue<Integer> q = new LinkedList<Integer>(); q.add(source); while (!q.isEmpty()) { Node unode = nodes.get(q.poll()); for (int v : unode.getEdges()) { Node vnode = nodes.get(v); if (vnode.getColor() == Node.Color.WHITE) { vnode.setColor(Node.Color.GRAY); vnode.setDistance(unode.getDistance() + 1); vnode.setParent(unode.getId()); q.add(v); } } unode.setColor(Node.Color.BLACK); } } public void addNode(int id, int[] edges) { // A couple lines of hacky code to transform our // input integer arrays (which are most comprehensible // write out in our main method) into List<Integer> List<Integer> list = new ArrayList<Integer>(); for (int edge : edges) list.add(edge); Node node = new Node(id); node.setEdges(list); nodes.put(id, node); } public void print() { for (int v : nodes.keySet()) { Node vnode = nodes.get(v); System.out.printf("v = %2d parent = %2d distance = %2d \n", vnode.getId(), vnode.getParent(), vnode.getDistance()); } } public static void main(String[] args) { Graph graph = new Graph(); graph.addNode(1, new int[] { 2, 5 }); graph.addNode(2, new int[] { 1, 5, 3, 4 }); graph.addNode(3, new int[] { 2, 4 }); graph.addNode(4, new int[] { 2, 5, 3 }); graph.addNode(5, new int[] { 4, 1, 2 }); graph.breadthFirstSearch(1); graph.print(); } }
但是以上BFS单线程构造树形结构对于大数据的时候,显得苍白无力。
对此,下面提出基于MapReduce的BFS并行构造社交网络中的树图算法
使用MapReduce计算图模型,基本思想是在每个Map slot的迭代中“makes a mess” 而在 Reduce slot中“cleans up the mess”
假设,我们用如下方式表示一个节点:
ID EDGES|DISTANCE_FROM_SOURCE|COLOR|
其中,EDGES是一个用“,”隔开的链接到本节点的其他节点链表List,对于我们不知道链表中的节点到本节点的距离,
使用Integer.MAX_VALUE表示"unknown"。
从COLOR,我们可以知道本节点我们计算过没有,WHITE表示计算过。
假设,我们的输入数据如下,我们从节点1开始广度优先搜索,因此,初始时,标记节点1的距离为0,color为GRAY
1 2,5|0|GRAY| 2 1,3,4,5|Integer.MAX_VALUE|WHITE| 3 2,4|Integer.MAX_VALUE|WHITE| 4 2,3,5|Integer.MAX_VALUE|WHITE| 5 1,2,4|Integer.MAX_VALUE|WHITE|
map slot负责找出所有COLOR为GEAY的节点。而,对于每个我们计算过的节点,即COLOR为GRAY的节点,对应地,map slot的输出为一个COLOR为BLACK的节点,其中的DISTANCE = DISTANCE + 1。同时,map slot也输出所有不是GEAY的节点,其中距离不变。
因此,上述输入的输出形式如下:
1 2,5|0|BLACK| 2 NULL|1|GRAY| 5 NULL|1|GRAY| 2 1,3,4,5|Integer.MAX_VALUE|WHITE| 3 2,4|Integer.MAX_VALUE|WHITE| 4 2,3,5|Integer.MAX_VALUE|WHITE| 5 1,2,4|Integer.MAX_VALUE|WHITE|
在reduce slot获取的数据都具有同一个key。例如,获取key=2的reduce slot的对应values值为:
2 NULL|1|GRAY| 2 1,3,4,5|Integer.MAX_VALUE|WHITE|
reduce slot的任务是从获取到的数据,经过采用:
1、有邻接节点的节点
2、所有有邻接节点的节点中的最小距离
3、所有有邻接节点中颜色最深的节点
构造出新的输出,如,经过第一次MapReduce过程,我们得到如下形式的数据:
1 2,5,|0|BLACK 2 1,3,4,5,|1|GRAY 3 2,4,|Integer.MAX_VALUE|WHITE 4 2,3,5,|Integer.MAX_VALUE|WHITE 5 1,2,4,|1|GRAY
第二次MapReduce过程,采用上述输出作为输入,以相同的逻辑运算,得到如下结果:
1 2,5,|0|BLACK 2 1,3,4,5,|1|BLACK 3 2,4,|2|GRAY 4 2,3,5,|2|GRAY 5 1,2,4,|1|BLACK
第三次的输出为:
1 2,5,|0|BLACK 2 1,3,4,5,|1|BLACK 3 2,4,|2|BLACK 4 2,3,5,|2|BLACK 5 1,2,4,|1|BLACK
MapReduce迭代过程直到所有节点不为GRAY为止。
而如果有节点没有连接到源节点,那么可能迭代过程每次都有COLOR为WHITE的节点。
MapReduce的代码如下:
1、节点对象建模:Node.java
package org.apache.hadoop.examples; import java.util.*; import org.apache.hadoop.io.Text; public class Node { public static enum Color { WHITE, GRAY, BLACK }; private final int id; private int distance; private List<Integer> edges = new ArrayList<Integer>(); private Color color = Color.WHITE; public Node(String str) { String[] map = str.split("\t"); String key = map[0]; String value = map[1]; String[] tokens = value.split("\\|"); this.id = Integer.parseInt(key); for (String s : tokens[0].split(",")) { if (s.length() > 0) { edges.add(Integer.parseInt(s)); } } if (tokens[1].equals("Integer.MAX_VALUE")) { this.distance = Integer.MAX_VALUE; } else { this.distance = Integer.parseInt(tokens[1]); } this.color = Color.valueOf(tokens[2]); } public Node(int id) { this.id = id; } public int getId() { return this.id; } public int getDistance() { return this.distance; } public void setDistance(int distance) { this.distance = distance; } public Color getColor() { return this.color; } public void setColor(Color color) { this.color = color; } public List<Integer> getEdges() { return this.edges; } public void setEdges(List<Integer> edges) { this.edges = edges; } public Text getLine() { StringBuffer s = new StringBuffer(); for (int v : edges) { s.append(v).append(","); } s.append("|"); if (this.distance < Integer.MAX_VALUE) { s.append(this.distance).append("|"); } else { s.append("Integer.MAX_VALUE").append("|"); } s.append(color.toString()); return new Text(s.toString()); } }
2、MapRecue广度优先搜索:
package org.apache.hadoop.examples; import java.io.IOException; import java.util.Iterator; import java.util.List; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * This is an example Hadoop Map/Reduce application. * * It inputs a map in adjacency list format, and performs a breadth-first search. * The input format is * ID EDGES|DISTANCE|COLOR * where * ID = the unique identifier for a node (assumed to be an int here) * EDGES = the list of edges emanating from the node (e.g. 3,8,9,12) * DISTANCE = the to be determined distance of the node from the source * COLOR = a simple status tracking field to keep track of when we're finished with a node * It assumes that the source node (the node from which to start the search) has * been marked with distance 0 and color GRAY in the original input. All other * nodes will have input distance Integer.MAX_VALUE and color WHITE. */ public class GraphSearch extends Configured implements Tool { public static final Log LOG = LogFactory.getLog("org.apache.hadoop.examples.GraphSearch"); /** * Nodes that are Color.WHITE or Color.BLACK are emitted, as is. For every * edge of a Color.GRAY node, we emit a new Node with distance incremented by * one. The Color.GRAY node is then colored black and is also emitted. */ public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, IntWritable, Text> { public void map(LongWritable key, Text value, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException { Node node = new Node(value.toString()); // For each GRAY node, emit each of the edges as a new node (also GRAY) if (node.getColor() == Node.Color.GRAY) { for (int v : node.getEdges()) { Node vnode = new Node(v); vnode.setDistance(node.getDistance() + 1); vnode.setColor(Node.Color.GRAY); output.collect(new IntWritable(vnode.getId()), vnode.getLine()); } // We're done with this node now, color it BLACK node.setColor(Node.Color.BLACK); } // No matter what, we emit the input node // If the node came into this method GRAY, it will be output as BLACK output.collect(new IntWritable(node.getId()), node.getLine()); } } /** * A reducer class that just emits the sum of the input values. */ public static class Reduce extends MapReduceBase implements Reducer<IntWritable, Text, IntWritable, Text> { /** * Make a new node which combines all information for this single node id. * The new node should have * - The full list of edges * - The minimum distance * - The darkest Color */ public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable, Text> output, Reporter reporter) throws IOException { List<Integer> edges = null; int distance = Integer.MAX_VALUE; Node.Color color = Node.Color.WHITE; while (values.hasNext()) { Text value = values.next(); Node u = new Node(key.get() + "\t" + value.toString()); // One (and only one) copy of the node will be the fully expanded // version, which includes the edges if (u.getEdges().size() > 0) { edges = u.getEdges(); } // Save the minimum distance if (u.getDistance() < distance) { distance = u.getDistance(); } // Save the darkest color if (u.getColor().ordinal() > color.ordinal()) { color = u.getColor(); } } Node n = new Node(key.get()); n.setDistance(distance); n.setEdges(edges); n.setColor(color); output.collect(key, new Text(n.getLine())); } } static int printUsage() { System.out.println("graphsearch [-m <num mappers>] [-r <num reducers>]"); ToolRunner.printGenericCommandUsage(System.out); return -1; } private JobConf getJobConf(String[] args) { JobConf conf = new JobConf(getConf(), GraphSearch.class); conf.setJobName("graphsearch"); // the keys are the unique identifiers for a Node (ints in this case). conf.setOutputKeyClass(IntWritable.class); // the values are the string representation of a Node conf.setOutputValueClass(Text.class); conf.setMapperClass(MapClass.class); conf.setReducerClass(Reduce.class); for (int i = 0; i < args.length; ++i) { if ("-m".equals(args[i])) { conf.setNumMapTasks(Integer.parseInt(args[++i])); } else if ("-r".equals(args[i])) { conf.setNumReduceTasks(Integer.parseInt(args[++i])); } } return conf; } /** * The main driver for word count map/reduce program. Invoke this method to * submit the map/reduce job. * * @throws IOException * When there is communication problems with the job tracker. */ public int run(String[] args) throws Exception { int iterationCount = 0; while (keepGoing(iterationCount)) { String input; if (iterationCount == 0) input = "input-graph"; else input = "output-graph-" + iterationCount; String output = "output-graph-" + (iterationCount + 1); JobConf conf = getJobConf(args); FileInputFormat.setInputPaths(conf, new Path(input)); FileOutputFormat.setOutputPath(conf, new Path(output)); RunningJob job = JobClient.runJob(conf); iterationCount++; } return 0; } private boolean keepGoing(int iterationCount) { if(iterationCount >= 4) { return false; } return true; } public static void main(String[] args) throws Exception { int res = ToolRunner.run(new Configuration(), new GraphSearch(), args); System.exit(res); } }
参考:
breadth-first graph search using an iterative map-reduce algorithm