用arm-linux-gcc v4.3.4交叉编译Qt4.8.3

1.解压缩

#tar zxvf  qt-everywhere-opensource-src-4.8.3.tar.gz

2. configure

#mkdir buildarm-static
#cd buildarm-static
#../qt-everywhere-opensource-src-4.8.3/configure \
    -opensource -confirm-license \
    -release \
    -prefix /usr/qt-4.83-arm-static \
    -embedded arm -little-endian -static \
    -qt-mouse-tslib -L $PWD/lib -I $PWD/include/tslib \
    -no-largefile \
    -no-accessibility \
    -no-qt3support \
    -no-xmlpatterns \
    -no-multimedia -audio-backend \
    -no-phonon      -no-phonon-backend \
    -no-svg \
    -no-webkit \
    -no-javascript-jit \
    -no-script -no-scripttools \
    -no-declarative \
    -no-declarative-debug \
    -platform qws/linux-x86-g++ \
    -no-mmx -no-3dnow  \
    -no-sse -no-sse2 -no-sse3 -no-ssse3  -no-sse4.1 -no-sse4.2 \
    -no-avx -no-neon\
    -qt-zlib \
    -no-gif -no-libtiff \
    -qt-libpng \
    -no-libmng \
    -qt-libjpeg \
    -qt-freetype -no-openssl \
    -nomake tools -nomake examples -nomake demos -nomake docs -nomake translations \
    -no-nis -no-cups -no-iconv -no-pch -no-dbus \
    -reduce-relocations \
    -no-gtkstyle -no-nas-sound -no-opengl -no-openvg -no-sm \
    -no-xshape -no-xvideo -no-xsync -no-xinerama -no-xcursor \
    -no-xfixes -no-xrandr -no-xrender -no-mitshm -no-fontconfig \
    -no-xinput -no-xkb -no-glib \
    2>&1 | tee ../qteconfigarm-static.log

 

3.compile and install

#gmake 2>&1 | tee ../qtemake-static.log   

#gmake install

4. error

/qt-everywhere-opensource-src-4.8.5/src/3rdparty/javascriptcore/JavaScriptCore/runtime/Collector.cpp:662: error: 'pthread_getattr_np' was not declared in this scope

 

修改Collector.cpp文件:

/*

 *  Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.

 *  Copyright (C) 2007 Eric Seidel <[email protected]>

 *

 *  This library is free software; you can redistribute it and/or

 *  modify it under the terms of the GNU Lesser General Public

 *  License as published by the Free Software Foundation; either

 *  version 2 of the License, or (at your option) any later version.

 *

 *  This library is distributed in the hope that it will be useful,

 *  but WITHOUT ANY WARRANTY; without even the implied warranty of

 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU

 *  Lesser General Public License for more details.

 *

 *  You should have received a copy of the GNU Lesser General Public

 *  License along with this library; if not, write to the Free Software

 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

 *

 */



#include "config.h"

#include "Collector.h"



#include "ArgList.h"

#include "CallFrame.h"

#include "CodeBlock.h"

#include "CollectorHeapIterator.h"

#include "Interpreter.h"

#include "JSArray.h"

#include "JSGlobalObject.h"

#include "JSLock.h"

#include "JSONObject.h"

#include "JSString.h"

#include "JSValue.h"

#include "JSZombie.h"

#include "MarkStack.h"

#include "Nodes.h"

#include "Tracing.h"

#include <algorithm>

#include <limits.h>

#include <setjmp.h>

#include <stdlib.h>

#include <wtf/FastMalloc.h>

#include <wtf/HashCountedSet.h>

#include <wtf/UnusedParam.h>

#include <wtf/VMTags.h>



#if OS(DARWIN)



#include <mach/mach_init.h>

#include <mach/mach_port.h>

#include <mach/task.h>

#include <mach/thread_act.h>

#include <mach/vm_map.h>



#elif OS(WINDOWS)



#include <windows.h>

#include <malloc.h>



#elif OS(HAIKU)



#include <OS.h>



#elif OS(UNIX)



#include <stdlib.h>

#if !OS(HAIKU)

#include <sys/mman.h>

#endif

#include <unistd.h>



#if defined(QT_LINUXBASE)

#include <dlfcn.h>

#endif



#if defined(__UCLIBC__)

// versions of uClibc 0.9.32 and below with linuxthreads.old do not have

// pthread_getattr_np or pthread_attr_getstack.

#if __UCLIBC_MAJOR__ == 0 && \

    (__UCLIBC_MINOR__ < 9 || \

    (__UCLIBC_MINOR__ == 9 && __UCLIBC_SUBLEVEL__ <= 32)) && \

    defined(__LINUXTHREADS_OLD__)

#define UCLIBC_USE_PROC_SELF_MAPS 1

#include <stdio_ext.h>

extern int *__libc_stack_end;

#endif

#endif



#if OS(SOLARIS)

#include <thread.h>

#else

#include <pthread.h>

#endif



#if HAVE(PTHREAD_NP_H)

#include <pthread_np.h>

#endif



#if OS(QNX)

#include <fcntl.h>

#include <sys/procfs.h>

#include <stdio.h>

#include <errno.h>

#endif



#endif



#define COLLECT_ON_EVERY_ALLOCATION 0



using std::max;



namespace JSC {



// tunable parameters



const size_t GROWTH_FACTOR = 2;

const size_t LOW_WATER_FACTOR = 4;

const size_t ALLOCATIONS_PER_COLLECTION = 3600;

// This value has to be a macro to be used in max() without introducing

// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.

#define MIN_ARRAY_SIZE (static_cast<size_t>(14))



#if ENABLE(JSC_MULTIPLE_THREADS)



#if OS(DARWIN)

typedef mach_port_t PlatformThread;

#elif OS(WINDOWS)

typedef HANDLE PlatformThread;

#endif



class Heap::Thread {

public:

    Thread(pthread_t pthread, const PlatformThread& platThread, void* base) 

        : posixThread(pthread)

        , platformThread(platThread)

        , stackBase(base)

    {

    }



    Thread* next;

    pthread_t posixThread;

    PlatformThread platformThread;

    void* stackBase;

};



#endif



Heap::Heap(JSGlobalData* globalData)

    : m_markListSet(0)

#if ENABLE(JSC_MULTIPLE_THREADS)

    , m_registeredThreads(0)

    , m_currentThreadRegistrar(0)

#endif

#if OS(SYMBIAN)

    , m_blockallocator(WTF::AlignedBlockAllocator::instance(JSCCOLLECTOR_VIRTUALMEM_RESERVATION, BLOCK_SIZE))

#endif

    , m_globalData(globalData)

{

    ASSERT(globalData);

    memset(&m_heap, 0, sizeof(CollectorHeap));

    allocateBlock();

}



Heap::~Heap()

{

    // The destroy function must already have been called, so assert this.

    ASSERT(!m_globalData);

}



void Heap::destroy()

{

    JSLock lock(SilenceAssertionsOnly);



    if (!m_globalData)

        return;



    ASSERT(!m_globalData->dynamicGlobalObject);

    ASSERT(!isBusy());

    

    // The global object is not GC protected at this point, so sweeping may delete it

    // (and thus the global data) before other objects that may use the global data.

    RefPtr<JSGlobalData> protect(m_globalData);



    delete m_markListSet;

    m_markListSet = 0;



    freeBlocks();



#if ENABLE(JSC_MULTIPLE_THREADS)

    if (m_currentThreadRegistrar) {

        int error = pthread_key_delete(m_currentThreadRegistrar);

        ASSERT_UNUSED(error, !error);

    }



    MutexLocker registeredThreadsLock(m_registeredThreadsMutex);

    for (Heap::Thread* t = m_registeredThreads; t;) {

        Heap::Thread* next = t->next;

        delete t;

        t = next;

    }

#endif

    m_globalData = 0;

}



NEVER_INLINE CollectorBlock* Heap::allocateBlock()

{

#if OS(DARWIN)

    vm_address_t address = 0;

    vm_map(current_task(), &address, BLOCK_SIZE, BLOCK_OFFSET_MASK, VM_FLAGS_ANYWHERE | VM_TAG_FOR_COLLECTOR_MEMORY, MEMORY_OBJECT_NULL, 0, FALSE, VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);

#elif OS(SYMBIAN)

    void* address = m_blockallocator.alloc();  

    if (!address)

        CRASH();

#elif OS(WINCE)

    void* address = VirtualAlloc(NULL, BLOCK_SIZE, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

#elif OS(WINDOWS)

#if COMPILER(MINGW) && !COMPILER(MINGW64)

    void* address = __mingw_aligned_malloc(BLOCK_SIZE, BLOCK_SIZE);

#else

    void* address = _aligned_malloc(BLOCK_SIZE, BLOCK_SIZE);

#endif

    memset(address, 0, BLOCK_SIZE);

#elif HAVE(POSIX_MEMALIGN)

    void* address;

    posix_memalign(&address, BLOCK_SIZE, BLOCK_SIZE);

#else



#if ENABLE(JSC_MULTIPLE_THREADS)

#error Need to initialize pagesize safely.

#endif

    static size_t pagesize = getpagesize();



    size_t extra = 0;

    if (BLOCK_SIZE > pagesize)

        extra = BLOCK_SIZE - pagesize;



    void* mmapResult = mmap(NULL, BLOCK_SIZE + extra, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);

    uintptr_t address = reinterpret_cast<uintptr_t>(mmapResult);



    size_t adjust = 0;

    if ((address & BLOCK_OFFSET_MASK) != 0)

        adjust = BLOCK_SIZE - (address & BLOCK_OFFSET_MASK);



    if (adjust > 0)

        munmap(reinterpret_cast<char*>(address), adjust);



    if (adjust < extra)

        munmap(reinterpret_cast<char*>(address + adjust + BLOCK_SIZE), extra - adjust);



    address += adjust;

#endif



    // Initialize block.



    CollectorBlock* block = reinterpret_cast<CollectorBlock*>(address);

    block->heap = this;

    clearMarkBits(block);



    Structure* dummyMarkableCellStructure = m_globalData->dummyMarkableCellStructure.get();

    for (size_t i = 0; i < HeapConstants::cellsPerBlock; ++i)

        new (block->cells + i) JSCell(dummyMarkableCellStructure);

    

    // Add block to blocks vector.



    size_t numBlocks = m_heap.numBlocks;

    if (m_heap.usedBlocks == numBlocks) {

        static const size_t maxNumBlocks = ULONG_MAX / sizeof(CollectorBlock*) / GROWTH_FACTOR;

        if (numBlocks > maxNumBlocks)

            CRASH();

        numBlocks = max(MIN_ARRAY_SIZE, numBlocks * GROWTH_FACTOR);

        m_heap.numBlocks = numBlocks;

        m_heap.blocks = static_cast<CollectorBlock**>(fastRealloc(m_heap.blocks, numBlocks * sizeof(CollectorBlock*)));

    }

    m_heap.blocks[m_heap.usedBlocks++] = block;



    return block;

}



NEVER_INLINE void Heap::freeBlock(size_t block)

{

    m_heap.didShrink = true;



    ObjectIterator it(m_heap, block);

    ObjectIterator end(m_heap, block + 1);

    for ( ; it != end; ++it)

        (*it)->~JSCell();

    freeBlockPtr(m_heap.blocks[block]);



    // swap with the last block so we compact as we go

    m_heap.blocks[block] = m_heap.blocks[m_heap.usedBlocks - 1];

    m_heap.usedBlocks--;



    if (m_heap.numBlocks > MIN_ARRAY_SIZE && m_heap.usedBlocks < m_heap.numBlocks / LOW_WATER_FACTOR) {

        m_heap.numBlocks = m_heap.numBlocks / GROWTH_FACTOR; 

        m_heap.blocks = static_cast<CollectorBlock**>(fastRealloc(m_heap.blocks, m_heap.numBlocks * sizeof(CollectorBlock*)));

    }

}



NEVER_INLINE void Heap::freeBlockPtr(CollectorBlock* block)

{

#if OS(DARWIN)    

    vm_deallocate(current_task(), reinterpret_cast<vm_address_t>(block), BLOCK_SIZE);

#elif OS(SYMBIAN)

    m_blockallocator.free(reinterpret_cast<void*>(block));

#elif OS(WINCE)

    VirtualFree(block, 0, MEM_RELEASE);

#elif OS(WINDOWS)

#if COMPILER(MINGW) && !COMPILER(MINGW64)

    __mingw_aligned_free(block);

#else

    _aligned_free(block);

#endif

#elif HAVE(POSIX_MEMALIGN)

    free(block);

#else

    munmap(reinterpret_cast<char*>(block), BLOCK_SIZE);

#endif

}



void Heap::freeBlocks()

{

    ProtectCountSet protectedValuesCopy = m_protectedValues;



    clearMarkBits();

    ProtectCountSet::iterator protectedValuesEnd = protectedValuesCopy.end();

    for (ProtectCountSet::iterator it = protectedValuesCopy.begin(); it != protectedValuesEnd; ++it)

        markCell(it->first);



    m_heap.nextCell = 0;

    m_heap.nextBlock = 0;

    DeadObjectIterator it(m_heap, m_heap.nextBlock, m_heap.nextCell);

    DeadObjectIterator end(m_heap, m_heap.usedBlocks);

    for ( ; it != end; ++it)

        (*it)->~JSCell();



    ASSERT(!protectedObjectCount());



    protectedValuesEnd = protectedValuesCopy.end();

    for (ProtectCountSet::iterator it = protectedValuesCopy.begin(); it != protectedValuesEnd; ++it)

        it->first->~JSCell();



    for (size_t block = 0; block < m_heap.usedBlocks; ++block)

        freeBlockPtr(m_heap.blocks[block]);



    fastFree(m_heap.blocks);



    memset(&m_heap, 0, sizeof(CollectorHeap));

}



void Heap::recordExtraCost(size_t cost)

{

    // Our frequency of garbage collection tries to balance memory use against speed

    // by collecting based on the number of newly created values. However, for values

    // that hold on to a great deal of memory that's not in the form of other JS values,

    // that is not good enough - in some cases a lot of those objects can pile up and

    // use crazy amounts of memory without a GC happening. So we track these extra

    // memory costs. Only unusually large objects are noted, and we only keep track

    // of this extra cost until the next GC. In garbage collected languages, most values

    // are either very short lived temporaries, or have extremely long lifetimes. So

    // if a large value survives one garbage collection, there is not much point to

    // collecting more frequently as long as it stays alive.



    if (m_heap.extraCost > maxExtraCost && m_heap.extraCost > m_heap.usedBlocks * BLOCK_SIZE / 2) {

        // If the last iteration through the heap deallocated blocks, we need

        // to clean up remaining garbage before marking. Otherwise, the conservative

        // marking mechanism might follow a pointer to unmapped memory.

        if (m_heap.didShrink)

            sweep();

        reset();

    }

    m_heap.extraCost += cost;

}



void* Heap::allocate(size_t s)

{

    typedef HeapConstants::Block Block;

    typedef HeapConstants::Cell Cell;

    

    ASSERT(JSLock::lockCount() > 0);

    ASSERT(JSLock::currentThreadIsHoldingLock());

    ASSERT_UNUSED(s, s <= HeapConstants::cellSize);



    ASSERT(m_heap.operationInProgress == NoOperation);



#if COLLECT_ON_EVERY_ALLOCATION

    collectAllGarbage();

    ASSERT(m_heap.operationInProgress == NoOperation);

#endif



allocate:



    // Fast case: find the next garbage cell and recycle it.



    do {

        ASSERT(m_heap.nextBlock < m_heap.usedBlocks);

        Block* block = reinterpret_cast<Block*>(m_heap.blocks[m_heap.nextBlock]);

        do {

            ASSERT(m_heap.nextCell < HeapConstants::cellsPerBlock);

            if (!block->marked.get(m_heap.nextCell)) { // Always false for the last cell in the block

                Cell* cell = block->cells + m_heap.nextCell;



                m_heap.operationInProgress = Allocation;

                JSCell* imp = reinterpret_cast<JSCell*>(cell);

                imp->~JSCell();

                m_heap.operationInProgress = NoOperation;



                ++m_heap.nextCell;

                return cell;

            }

        } while (++m_heap.nextCell != HeapConstants::cellsPerBlock);

        m_heap.nextCell = 0;

    } while (++m_heap.nextBlock != m_heap.usedBlocks);



    // Slow case: reached the end of the heap. Mark live objects and start over.



    reset();

    goto allocate;

}



void Heap::resizeBlocks()

{

    m_heap.didShrink = false;



    size_t usedCellCount = markedCells();

    size_t minCellCount = usedCellCount + max(ALLOCATIONS_PER_COLLECTION, usedCellCount);

    size_t minBlockCount = (minCellCount + HeapConstants::cellsPerBlock - 1) / HeapConstants::cellsPerBlock;



    size_t maxCellCount = 1.25f * minCellCount;

    size_t maxBlockCount = (maxCellCount + HeapConstants::cellsPerBlock - 1) / HeapConstants::cellsPerBlock;



    if (m_heap.usedBlocks < minBlockCount)

        growBlocks(minBlockCount);

    else if (m_heap.usedBlocks > maxBlockCount)

        shrinkBlocks(maxBlockCount);

}



void Heap::growBlocks(size_t neededBlocks)

{

    ASSERT(m_heap.usedBlocks < neededBlocks);

    while (m_heap.usedBlocks < neededBlocks)

        allocateBlock();

}



void Heap::shrinkBlocks(size_t neededBlocks)

{

    ASSERT(m_heap.usedBlocks > neededBlocks);

    

    // Clear the always-on last bit, so isEmpty() isn't fooled by it.

    for (size_t i = 0; i < m_heap.usedBlocks; ++i)

        m_heap.blocks[i]->marked.clear(HeapConstants::cellsPerBlock - 1);



    for (size_t i = 0; i != m_heap.usedBlocks && m_heap.usedBlocks != neededBlocks; ) {

        if (m_heap.blocks[i]->marked.isEmpty()) {

            freeBlock(i);

        } else

            ++i;

    }



    // Reset the always-on last bit.

    for (size_t i = 0; i < m_heap.usedBlocks; ++i)

        m_heap.blocks[i]->marked.set(HeapConstants::cellsPerBlock - 1);

}



#if OS(WINCE)

void* g_stackBase = 0;



inline bool isPageWritable(void* page)

{

    MEMORY_BASIC_INFORMATION memoryInformation;

    DWORD result = VirtualQuery(page, &memoryInformation, sizeof(memoryInformation));



    // return false on error, including ptr outside memory

    if (result != sizeof(memoryInformation))

        return false;



    DWORD protect = memoryInformation.Protect & ~(PAGE_GUARD | PAGE_NOCACHE);

    return protect == PAGE_READWRITE

        || protect == PAGE_WRITECOPY

        || protect == PAGE_EXECUTE_READWRITE

        || protect == PAGE_EXECUTE_WRITECOPY;

}



static void* getStackBase(void* previousFrame)

{

    // find the address of this stack frame by taking the address of a local variable

    bool isGrowingDownward;

    void* thisFrame = (void*)(&isGrowingDownward);



    isGrowingDownward = previousFrame < &thisFrame;

    static DWORD pageSize = 0;

    if (!pageSize) {

        SYSTEM_INFO systemInfo;

        GetSystemInfo(&systemInfo);

        pageSize = systemInfo.dwPageSize;

    }



    // scan all of memory starting from this frame, and return the last writeable page found

    register char* currentPage = (char*)((DWORD)thisFrame & ~(pageSize - 1));

    if (isGrowingDownward) {

        while (currentPage > 0) {

            // check for underflow

            if (currentPage >= (char*)pageSize)

                currentPage -= pageSize;

            else

                currentPage = 0;

            if (!isPageWritable(currentPage))

                return currentPage + pageSize;

        }

        return 0;

    } else {

        while (true) {

            // guaranteed to complete because isPageWritable returns false at end of memory

            currentPage += pageSize;

            if (!isPageWritable(currentPage))

                return currentPage;

        }

    }

}

#endif



#if OS(HPUX)

struct hpux_get_stack_base_data

{

    pthread_t thread;

    _pthread_stack_info info;

};



static void *hpux_get_stack_base_internal(void *d)

{

    hpux_get_stack_base_data *data = static_cast<hpux_get_stack_base_data *>(d);



    // _pthread_stack_info_np requires the target thread to be suspended

    // in order to get information about it

    pthread_suspend(data->thread);



    // _pthread_stack_info_np returns an errno code in case of failure

    // or zero on success

    if (_pthread_stack_info_np(data->thread, &data->info)) {

        // failed

        return 0;

    }



    pthread_continue(data->thread);

    return data;

}



static void *hpux_get_stack_base()

{

    hpux_get_stack_base_data data;

    data.thread = pthread_self();



    // We cannot get the stack information for the current thread

    // So we start a new thread to get that information and return it to us

    pthread_t other;

    pthread_create(&other, 0, hpux_get_stack_base_internal, &data);



    void *result;

    pthread_join(other, &result);

    if (result)

       return data.info.stk_stack_base;

    return 0;

}

#endif



#if OS(QNX)

static inline void *currentThreadStackBaseQNX()

{

    static void* stackBase = 0;

    static size_t stackSize = 0;

    static pthread_t stackThread;

    pthread_t thread = pthread_self();

    if (stackBase == 0 || thread != stackThread) {

        struct _debug_thread_info threadInfo;

        memset(&threadInfo, 0, sizeof(threadInfo));

        threadInfo.tid = pthread_self();

        int fd = open("/proc/self", O_RDONLY);

        if (fd == -1) {

            LOG_ERROR("Unable to open /proc/self (errno: %d)", errno);

            return 0;

        }

        devctl(fd, DCMD_PROC_TIDSTATUS, &threadInfo, sizeof(threadInfo), 0);

        close(fd);

        stackBase = reinterpret_cast<void*>(threadInfo.stkbase);

        stackSize = threadInfo.stksize;

        ASSERT(stackBase);

        stackThread = thread;

    }

    return static_cast<char*>(stackBase) + stackSize;

}

#endif



static inline void* currentThreadStackBase()

{

#if OS(DARWIN)

    pthread_t thread = pthread_self();

    return pthread_get_stackaddr_np(thread);

#elif OS(WINCE)

    AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);

    MutexLocker locker(mutex);

    if (g_stackBase)

        return g_stackBase;

    else {

        int dummy;

        return getStackBase(&dummy);

    }

#elif OS(WINDOWS) && CPU(X86) && COMPILER(MSVC)

    // offset 0x18 from the FS segment register gives a pointer to

    // the thread information block for the current thread

    NT_TIB* pTib;

    __asm {

        MOV EAX, FS:[18h]

        MOV pTib, EAX

    }

    return static_cast<void*>(pTib->StackBase);

#elif OS(WINDOWS) && CPU(X86_64) && (COMPILER(MSVC) || COMPILER(GCC))

    // FIXME: why only for MSVC?

    PNT_TIB64 pTib = reinterpret_cast<PNT_TIB64>(NtCurrentTeb());

    return reinterpret_cast<void*>(pTib->StackBase);

#elif OS(WINDOWS) && CPU(X86) && COMPILER(GCC)

    // offset 0x18 from the FS segment register gives a pointer to

    // the thread information block for the current thread

    NT_TIB* pTib;

    asm ( "movl %%fs:0x18, %0\n"

          : "=r" (pTib)

        );

    return static_cast<void*>(pTib->StackBase);

#elif OS(HPUX)

    return hpux_get_stack_base();

#elif OS(QNX)

    AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);

    MutexLocker locker(mutex);

    return currentThreadStackBaseQNX();

#elif OS(SOLARIS)

    stack_t s;

    thr_stksegment(&s);

    return s.ss_sp;

#elif OS(AIX)

    pthread_t thread = pthread_self();

    struct __pthrdsinfo threadinfo;

    char regbuf[256];

    int regbufsize = sizeof regbuf;



    if (pthread_getthrds_np(&thread, PTHRDSINFO_QUERY_ALL,

                            &threadinfo, sizeof threadinfo,

                            &regbuf, &regbufsize) == 0)

        return threadinfo.__pi_stackaddr;



    return 0;

#elif OS(OPENBSD)

    pthread_t thread = pthread_self();

    stack_t stack;

    pthread_stackseg_np(thread, &stack);

    return stack.ss_sp;

#elif OS(SYMBIAN)

    TThreadStackInfo info;

    RThread thread;

    thread.StackInfo(info);

    return (void*)info.iBase;

#elif OS(HAIKU)

    thread_info threadInfo;

    get_thread_info(find_thread(NULL), &threadInfo);

    return threadInfo.stack_end;

#elif OS(UNIX)

#ifdef UCLIBC_USE_PROC_SELF_MAPS

    // Read /proc/self/maps and locate the line whose address

    // range contains __libc_stack_end.

    FILE *file = fopen("/proc/self/maps", "r");

    if (!file)

        return 0;

    __fsetlocking(file, FSETLOCKING_BYCALLER);

    char *line = NULL;

    size_t lineLen = 0;

    while (!feof_unlocked(file)) {

        if (getdelim(&line, &lineLen, '\n', file) <= 0)

            break;



        long from;

        long to;

        if (sscanf (line, "%lx-%lx", &from, &to) != 2)

            continue;

        if (from <= (long)__libc_stack_end && (long)__libc_stack_end < to) {

            fclose(file);

            free(line);

#ifdef _STACK_GROWS_UP

            return (void *)from;

#else

            return (void *)to;

#endif

        }

    }

    fclose(file);

    free(line);

    return 0;

#else

    AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);

    MutexLocker locker(mutex);

    static void* stackBase = 0;

    static size_t stackSize = 0;

    static pthread_t stackThread;

    pthread_t thread = pthread_self();

    if (stackBase == 0 || thread != stackThread) {



#if defined(QT_LINUXBASE)

        // LinuxBase is missing pthread_getattr_np - resolve it once at runtime instead

        // see http://bugs.linuxbase.org/show_bug.cgi?id=2364

        typedef int (*GetAttrPtr)(pthread_t, pthread_attr_t *);

        static int (*pthread_getattr_np_ptr)(pthread_t, pthread_attr_t *) = 0;

        if (!pthread_getattr_np_ptr)

            *(void **)&pthread_getattr_np_ptr = dlsym(RTLD_DEFAULT, "pthread_getattr_np");

#endif

        pthread_attr_t sattr;

        pthread_attr_init(&sattr);

#if HAVE(PTHREAD_NP_H) || OS(NETBSD)

        // e.g. on FreeBSD 5.4, [email protected]

        pthread_attr_get_np(thread, &sattr);

#elif defined(QT_LINUXBASE)

        if (pthread_getattr_np_ptr)

            pthread_getattr_np_ptr(thread, &sattr);

#else

        // FIXME: this function is non-portable; other POSIX systems may have different np alternatives

        pthread_getattr_np(thread, &sattr);

#endif

        int rc = pthread_attr_getstack(&sattr, &stackBase, &stackSize);

        (void)rc; // FIXME: Deal with error code somehow? Seems fatal.

        ASSERT(stackBase);

        pthread_attr_destroy(&sattr);

        stackThread = thread;

    }

    return static_cast<char*>(stackBase) + stackSize;

#endif

#else

#error Need a way to get the stack base on this platform

#endif

}



#if ENABLE(JSC_MULTIPLE_THREADS)



static inline PlatformThread getCurrentPlatformThread()

{

#if OS(DARWIN)

    return pthread_mach_thread_np(pthread_self());

#elif OS(WINDOWS)

    return pthread_getw32threadhandle_np(pthread_self());

#endif

}



void Heap::makeUsableFromMultipleThreads()

{

    if (m_currentThreadRegistrar)

        return;



    int error = pthread_key_create(&m_currentThreadRegistrar, unregisterThread);

    if (error)

        CRASH();

}



void Heap::registerThread()

{

    ASSERT(!m_globalData->mainThreadOnly || isMainThread());



    if (!m_currentThreadRegistrar || pthread_getspecific(m_currentThreadRegistrar))

        return;



    pthread_setspecific(m_currentThreadRegistrar, this);

    Heap::Thread* thread = new Heap::Thread(pthread_self(), getCurrentPlatformThread(), currentThreadStackBase());



    MutexLocker lock(m_registeredThreadsMutex);



    thread->next = m_registeredThreads;

    m_registeredThreads = thread;

}



void Heap::unregisterThread(void* p)

{

    if (p)

        static_cast<Heap*>(p)->unregisterThread();

}



void Heap::unregisterThread()

{

    pthread_t currentPosixThread = pthread_self();



    MutexLocker lock(m_registeredThreadsMutex);



    if (pthread_equal(currentPosixThread, m_registeredThreads->posixThread)) {

        Thread* t = m_registeredThreads;

        m_registeredThreads = m_registeredThreads->next;

        delete t;

    } else {

        Heap::Thread* last = m_registeredThreads;

        Heap::Thread* t;

        for (t = m_registeredThreads->next; t; t = t->next) {

            if (pthread_equal(t->posixThread, currentPosixThread)) {

                last->next = t->next;

                break;

            }

            last = t;

        }

        ASSERT(t); // If t is NULL, we never found ourselves in the list.

        delete t;

    }

}



#else // ENABLE(JSC_MULTIPLE_THREADS)



void Heap::registerThread()

{

}



#endif



inline bool isPointerAligned(void* p)

{

    return (((intptr_t)(p) & (sizeof(char*) - 1)) == 0);

}



// Cell size needs to be a power of two for isPossibleCell to be valid.

COMPILE_ASSERT(sizeof(CollectorCell) % 2 == 0, Collector_cell_size_is_power_of_two);



#if USE(JSVALUE32)

static bool isHalfCellAligned(void *p)

{

    return (((intptr_t)(p) & (CELL_MASK >> 1)) == 0);

}



static inline bool isPossibleCell(void* p)

{

    return isHalfCellAligned(p) && p;

}



#else



static inline bool isCellAligned(void *p)

{

    return (((intptr_t)(p) & CELL_MASK) == 0);

}



static inline bool isPossibleCell(void* p)

{

    return isCellAligned(p) && p;

}

#endif // USE(JSVALUE32)



void Heap::markConservatively(MarkStack& markStack, void* start, void* end)

{

    if (start > end) {

        void* tmp = start;

        start = end;

        end = tmp;

    }



    ASSERT((static_cast<char*>(end) - static_cast<char*>(start)) < 0x1000000);

    ASSERT(isPointerAligned(start));

    ASSERT(isPointerAligned(end));



    char** p = static_cast<char**>(start);

    char** e = static_cast<char**>(end);



    CollectorBlock** blocks = m_heap.blocks;

    while (p != e) {

        char* x = *p++;

        if (isPossibleCell(x)) {

            size_t usedBlocks;

            uintptr_t xAsBits = reinterpret_cast<uintptr_t>(x);

            xAsBits &= CELL_ALIGN_MASK;



            uintptr_t offset = xAsBits & BLOCK_OFFSET_MASK;

            const size_t lastCellOffset = sizeof(CollectorCell) * (CELLS_PER_BLOCK - 1);

            if (offset > lastCellOffset)

                continue;



            CollectorBlock* blockAddr = reinterpret_cast<CollectorBlock*>(xAsBits - offset);

            usedBlocks = m_heap.usedBlocks;

            for (size_t block = 0; block < usedBlocks; block++) {

                if (blocks[block] != blockAddr)

                    continue;

                markStack.append(reinterpret_cast<JSCell*>(xAsBits));

                markStack.drain();

            }

        }

    }

}



void NEVER_INLINE Heap::markCurrentThreadConservativelyInternal(MarkStack& markStack)

{

    void* dummy;

    void* stackPointer = &dummy;

    void* stackBase = currentThreadStackBase();

    markConservatively(markStack, stackPointer, stackBase);

}



#if COMPILER(GCC)

#define REGISTER_BUFFER_ALIGNMENT __attribute__ ((aligned (sizeof(void*))))

#else

#define REGISTER_BUFFER_ALIGNMENT

#endif



void Heap::markCurrentThreadConservatively(MarkStack& markStack)

{

    // setjmp forces volatile registers onto the stack

    jmp_buf registers REGISTER_BUFFER_ALIGNMENT;

#if COMPILER(MSVC)

#pragma warning(push)

#pragma warning(disable: 4611)

#endif

    setjmp(registers);

#if COMPILER(MSVC)

#pragma warning(pop)

#endif



    markCurrentThreadConservativelyInternal(markStack);

}



#if ENABLE(JSC_MULTIPLE_THREADS)



static inline void suspendThread(const PlatformThread& platformThread)

{

#if OS(DARWIN)

    thread_suspend(platformThread);

#elif OS(WINDOWS)

    SuspendThread(platformThread);

#else

#error Need a way to suspend threads on this platform

#endif

}



static inline void resumeThread(const PlatformThread& platformThread)

{

#if OS(DARWIN)

    thread_resume(platformThread);

#elif OS(WINDOWS)

    ResumeThread(platformThread);

#else

#error Need a way to resume threads on this platform

#endif

}



typedef unsigned long usword_t; // word size, assumed to be either 32 or 64 bit



#if OS(DARWIN)



#if CPU(X86)

typedef i386_thread_state_t PlatformThreadRegisters;

#elif CPU(X86_64)

typedef x86_thread_state64_t PlatformThreadRegisters;

#elif CPU(PPC)

typedef ppc_thread_state_t PlatformThreadRegisters;

#elif CPU(PPC64)

typedef ppc_thread_state64_t PlatformThreadRegisters;

#elif CPU(ARM)

typedef arm_thread_state_t PlatformThreadRegisters;

#else

#error Unknown Architecture

#endif



#elif OS(WINDOWS) && CPU(X86)

typedef CONTEXT PlatformThreadRegisters;

#else

#error Need a thread register struct for this platform

#endif



static size_t getPlatformThreadRegisters(const PlatformThread& platformThread, PlatformThreadRegisters& regs)

{

#if OS(DARWIN)



#if CPU(X86)

    unsigned user_count = sizeof(regs)/sizeof(int);

    thread_state_flavor_t flavor = i386_THREAD_STATE;

#elif CPU(X86_64)

    unsigned user_count = x86_THREAD_STATE64_COUNT;

    thread_state_flavor_t flavor = x86_THREAD_STATE64;

#elif CPU(PPC) 

    unsigned user_count = PPC_THREAD_STATE_COUNT;

    thread_state_flavor_t flavor = PPC_THREAD_STATE;

#elif CPU(PPC64)

    unsigned user_count = PPC_THREAD_STATE64_COUNT;

    thread_state_flavor_t flavor = PPC_THREAD_STATE64;

#elif CPU(ARM)

    unsigned user_count = ARM_THREAD_STATE_COUNT;

    thread_state_flavor_t flavor = ARM_THREAD_STATE;

#else

#error Unknown Architecture

#endif



    kern_return_t result = thread_get_state(platformThread, flavor, (thread_state_t)&regs, &user_count);

    if (result != KERN_SUCCESS) {

        WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, 

                            "JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported.", result);

        CRASH();

    }

    return user_count * sizeof(usword_t);

// end OS(DARWIN)



#elif OS(WINDOWS) && CPU(X86)

    regs.ContextFlags = CONTEXT_INTEGER | CONTEXT_CONTROL | CONTEXT_SEGMENTS;

    GetThreadContext(platformThread, &regs);

    return sizeof(CONTEXT);

#else

#error Need a way to get thread registers on this platform

#endif

}



static inline void* otherThreadStackPointer(const PlatformThreadRegisters& regs)

{

#if OS(DARWIN)



#if __DARWIN_UNIX03



#if CPU(X86)

    return reinterpret_cast<void*>(regs.__esp);

#elif CPU(X86_64)

    return reinterpret_cast<void*>(regs.__rsp);

#elif CPU(PPC) || CPU(PPC64)

    return reinterpret_cast<void*>(regs.__r1);

#elif CPU(ARM)

    return reinterpret_cast<void*>(regs.__sp);

#else

#error Unknown Architecture

#endif



#else // !__DARWIN_UNIX03



#if CPU(X86)

    return reinterpret_cast<void*>(regs.esp);

#elif CPU(X86_64)

    return reinterpret_cast<void*>(regs.rsp);

#elif CPU(PPC) || CPU(PPC64)

    return reinterpret_cast<void*>(regs.r1);

#else

#error Unknown Architecture

#endif



#endif // __DARWIN_UNIX03



// end OS(DARWIN)

#elif CPU(X86) && OS(WINDOWS)

    return reinterpret_cast<void*>((uintptr_t) regs.Esp);

#else

#error Need a way to get the stack pointer for another thread on this platform

#endif

}



void Heap::markOtherThreadConservatively(MarkStack& markStack, Thread* thread)

{

    suspendThread(thread->platformThread);



    PlatformThreadRegisters regs;

    size_t regSize = getPlatformThreadRegisters(thread->platformThread, regs);



    // mark the thread's registers

    markConservatively(markStack, static_cast<void*>(&regs), static_cast<void*>(reinterpret_cast<char*>(&regs) + regSize));



    void* stackPointer = otherThreadStackPointer(regs);

    markConservatively(markStack, stackPointer, thread->stackBase);



    resumeThread(thread->platformThread);

}



#endif



void Heap::markStackObjectsConservatively(MarkStack& markStack)

{

    markCurrentThreadConservatively(markStack);



#if ENABLE(JSC_MULTIPLE_THREADS)



    if (m_currentThreadRegistrar) {



        MutexLocker lock(m_registeredThreadsMutex);



#ifndef NDEBUG

        // Forbid malloc during the mark phase. Marking a thread suspends it, so 

        // a malloc inside markChildren() would risk a deadlock with a thread that had been 

        // suspended while holding the malloc lock.

        fastMallocForbid();

#endif

        // It is safe to access the registeredThreads list, because we earlier asserted that locks are being held,

        // and since this is a shared heap, they are real locks.

        for (Thread* thread = m_registeredThreads; thread; thread = thread->next) {

            if (!pthread_equal(thread->posixThread, pthread_self()))

                markOtherThreadConservatively(markStack, thread);

        }

#ifndef NDEBUG

        fastMallocAllow();

#endif

    }

#endif

}



void Heap::protect(JSValue k)

{

    ASSERT(k);

    ASSERT(JSLock::currentThreadIsHoldingLock() || !m_globalData->isSharedInstance);



    if (!k.isCell())

        return;



    m_protectedValues.add(k.asCell());

}



void Heap::unprotect(JSValue k)

{

    ASSERT(k);

    ASSERT(JSLock::currentThreadIsHoldingLock() || !m_globalData->isSharedInstance);



    if (!k.isCell())

        return;



    m_protectedValues.remove(k.asCell());

}



void Heap::markProtectedObjects(MarkStack& markStack)

{

    ProtectCountSet::iterator end = m_protectedValues.end();

    for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it) {

        markStack.append(it->first);

        markStack.drain();

    }

}



void Heap::clearMarkBits()

{

    for (size_t i = 0; i < m_heap.usedBlocks; ++i)

        clearMarkBits(m_heap.blocks[i]);

}



void Heap::clearMarkBits(CollectorBlock* block)

{

    // allocate assumes that the last cell in every block is marked.

    block->marked.clearAll();

    block->marked.set(HeapConstants::cellsPerBlock - 1);

}



size_t Heap::markedCells(size_t startBlock, size_t startCell) const

{

    ASSERT(startBlock <= m_heap.usedBlocks);

    ASSERT(startCell < HeapConstants::cellsPerBlock);



    if (startBlock >= m_heap.usedBlocks)

        return 0;



    size_t result = 0;

    result += m_heap.blocks[startBlock]->marked.count(startCell);

    for (size_t i = startBlock + 1; i < m_heap.usedBlocks; ++i)

        result += m_heap.blocks[i]->marked.count();



    return result;

}



void Heap::sweep()

{

    ASSERT(m_heap.operationInProgress == NoOperation);

    if (m_heap.operationInProgress != NoOperation)

        CRASH();

    m_heap.operationInProgress = Collection;

    

#if !ENABLE(JSC_ZOMBIES)

    Structure* dummyMarkableCellStructure = m_globalData->dummyMarkableCellStructure.get();

#endif



    DeadObjectIterator it(m_heap, m_heap.nextBlock, m_heap.nextCell);

    DeadObjectIterator end(m_heap, m_heap.usedBlocks);

    for ( ; it != end; ++it) {

        JSCell* cell = *it;

#if ENABLE(JSC_ZOMBIES)

        if (!cell->isZombie()) {

            const ClassInfo* info = cell->classInfo();

            cell->~JSCell();

            new (cell) JSZombie(info, JSZombie::leakedZombieStructure());

            Heap::markCell(cell);

        }

#else

        cell->~JSCell();

        // Callers of sweep assume it's safe to mark any cell in the heap.

        new (cell) JSCell(dummyMarkableCellStructure);

#endif

    }



    m_heap.operationInProgress = NoOperation;

}



void Heap::markRoots()

{

#ifndef NDEBUG

    if (m_globalData->isSharedInstance) {

        ASSERT(JSLock::lockCount() > 0);

        ASSERT(JSLock::currentThreadIsHoldingLock());

    }

#endif



    ASSERT(m_heap.operationInProgress == NoOperation);

    if (m_heap.operationInProgress != NoOperation)

        CRASH();



    m_heap.operationInProgress = Collection;



    MarkStack& markStack = m_globalData->markStack;



    // Reset mark bits.

    clearMarkBits();



    // Mark stack roots.

    markStackObjectsConservatively(markStack);

    m_globalData->interpreter->registerFile().markCallFrames(markStack, this);



    // Mark explicitly registered roots.

    markProtectedObjects(markStack);



#if QT_BUILD_SCRIPT_LIB

    if (m_globalData->clientData)

        m_globalData->clientData->mark(markStack);

#endif



    // Mark misc. other roots.

    if (m_markListSet && m_markListSet->size())

        MarkedArgumentBuffer::markLists(markStack, *m_markListSet);

    if (m_globalData->exception)

        markStack.append(m_globalData->exception);

    m_globalData->smallStrings.markChildren(markStack);

    if (m_globalData->functionCodeBlockBeingReparsed)

        m_globalData->functionCodeBlockBeingReparsed->markAggregate(markStack);

    if (m_globalData->firstStringifierToMark)

        JSONObject::markStringifiers(markStack, m_globalData->firstStringifierToMark);



    markStack.drain();

    markStack.compact();



    m_heap.operationInProgress = NoOperation;

}



size_t Heap::objectCount() const

{

    return m_heap.nextBlock * HeapConstants::cellsPerBlock // allocated full blocks

           + m_heap.nextCell // allocated cells in current block

           + markedCells(m_heap.nextBlock, m_heap.nextCell) // marked cells in remainder of m_heap

           - m_heap.usedBlocks; // 1 cell per block is a dummy sentinel

}



void Heap::addToStatistics(Heap::Statistics& statistics) const

{

    statistics.size += m_heap.usedBlocks * BLOCK_SIZE;

    statistics.free += m_heap.usedBlocks * BLOCK_SIZE - (objectCount() * HeapConstants::cellSize);

}



Heap::Statistics Heap::statistics() const

{

    Statistics statistics = { 0, 0 };

    addToStatistics(statistics);

    return statistics;

}



size_t Heap::globalObjectCount()

{

    size_t count = 0;

    if (JSGlobalObject* head = m_globalData->head) {

        JSGlobalObject* o = head;

        do {

            ++count;

            o = o->next();

        } while (o != head);

    }

    return count;

}



size_t Heap::protectedGlobalObjectCount()

{

    size_t count = 0;

    if (JSGlobalObject* head = m_globalData->head) {

        JSGlobalObject* o = head;

        do {

            if (m_protectedValues.contains(o))

                ++count;

            o = o->next();

        } while (o != head);

    }



    return count;

}



size_t Heap::protectedObjectCount()

{

    return m_protectedValues.size();

}



static const char* typeName(JSCell* cell)

{

    if (cell->isString())

        return "string";

#if USE(JSVALUE32)

    if (cell->isNumber())

        return "number";

#endif

    if (cell->isGetterSetter())

        return "gettersetter";

    if (cell->isAPIValueWrapper())

        return "value wrapper";

    if (cell->isPropertyNameIterator())

        return "for-in iterator";

    ASSERT(cell->isObject());

    const ClassInfo* info = cell->classInfo();

    return info ? info->className : "Object";

}



HashCountedSet<const char*>* Heap::protectedObjectTypeCounts()

{

    HashCountedSet<const char*>* counts = new HashCountedSet<const char*>;



    ProtectCountSet::iterator end = m_protectedValues.end();

    for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it)

        counts->add(typeName(it->first));



    return counts;

}



bool Heap::isBusy()

{

    return m_heap.operationInProgress != NoOperation;

}



void Heap::reset()

{

    JAVASCRIPTCORE_GC_BEGIN();



    markRoots();



    JAVASCRIPTCORE_GC_MARKED();



    m_heap.nextCell = 0;

    m_heap.nextBlock = 0;

    m_heap.nextNumber = 0;

    m_heap.extraCost = 0;

#if ENABLE(JSC_ZOMBIES)

    sweep();

#endif

    resizeBlocks();



    JAVASCRIPTCORE_GC_END();

}



void Heap::collectAllGarbage()

{

    JAVASCRIPTCORE_GC_BEGIN();



    // If the last iteration through the heap deallocated blocks, we need

    // to clean up remaining garbage before marking. Otherwise, the conservative

    // marking mechanism might follow a pointer to unmapped memory.

    if (m_heap.didShrink)

        sweep();



    markRoots();



    JAVASCRIPTCORE_GC_MARKED();



    m_heap.nextCell = 0;

    m_heap.nextBlock = 0;

    m_heap.nextNumber = 0;

    m_heap.extraCost = 0;

    sweep();

    resizeBlocks();



    JAVASCRIPTCORE_GC_END();

}



LiveObjectIterator Heap::primaryHeapBegin()

{

    return LiveObjectIterator(m_heap, 0);

}



LiveObjectIterator Heap::primaryHeapEnd()

{

    return LiveObjectIterator(m_heap, m_heap.usedBlocks);

}



} // namespace JSC

 

error 2:

修改

qt-everywhere-opensource-src-4.8.3\src\corelib\thread\qthread_unix.cpp

的117行

#if defined(Q_OS_LINUX) && defined(__GLIBC__) && (defined(Q_CC_GNU) || defined(Q_CC_INTEL))

=>

#if defined(Q_OS_LINUX) && defined(__GLIBC__) && ((defined(Q_CC_GNU) && defined(_GLIBCXX_HAVE_TLS)) || defined(Q_CC_INTEL))

你可能感兴趣的:(linux)