网络流24题(11)航空路线问题(最大费用最大流)

思路:

1. 题目最终可以抽象为:最长不相交路径问题,两条从 s 到 t 的不相交路径的最大长度;

2. 把每个点分成 <i, X> <i, Y> 两点,引弧,容量为 1,费用为 1,特殊的:s, t 容量设置为 2,因为可以重复选择;

3. 对于 i, j 存在路径且 i < j 则 <i, Y> 向 <j, X> 引弧,容量为 1,费用为 0. 特殊的如果 i = s, j = t,容量设置为 2;

4. 求上述网络的最大费用最大流,把费用设置为负数,即可求最小费用最大流。结果 - 2 即是输出结果。

 

#include <iostream>

#include <queue>

#include <vector>

#include <map>

#include <string>

#include <algorithm>

using namespace std;



const int MAXN = 1010;

const int INFS = 0x3FFFFFFF;



struct edge {

    int from, to, cap, flow, cost;

    edge(int _from, int _to, int _cap, int _flow, int _cost)

        : from(_from), to(_to), cap(_cap), flow(_flow), cost(_cost) {}

};



class MCMF {

public:

    void initdata(int n) {

        this->n = n;

        edges.clear();

        for (int i = 0; i < n; i++)

            G[i].clear();

    }

    void addedge(int u, int v, int cap, int cost) {

        edges.push_back(edge(u, v, cap, 0, cost));

        edges.push_back(edge(v, u, 0, 0, -cost));

        G[u].push_back(edges.size() - 2);

        G[v].push_back(edges.size() - 1);

    }

    bool SPFA() {

        for (int i = 0; i < n; i++)

            d[i] = INFS, vis[i] = false;

        queue<int> Q;

        Q.push(s);

        d[s] = 0, vis[s] = true, p[s] = 0, a[s] = INFS;

        while (!Q.empty()) {

            int u = Q.front(); Q.pop();

            vis[u] = false;

            for (int i = 0; i < G[u].size(); i++) {

                edge& e = edges[G[u][i]];

                if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {

                    d[e.to] = d[u] + e.cost;

                    p[e.to] = G[u][i];

                    a[e.to] = min(a[u], e.cap - e.flow);

                    if (!vis[e.to]) { vis[e.to] = true; Q.push(e.to); }

                }

            }

        }

        return d[t] != INFS;

    }

    void augment(int& flow, int& cost) {

        flow += a[t];

        cost += a[t] * d[t];

        int u = t;

        while (u != s) {

            edges[p[u]].flow += a[t];

            edges[p[u]^1].flow -= a[t];

            u = edges[p[u]].from;

        }

    }

    int mincost(int s, int t) {

        this->s = s, this->t = t;

        int flow = 0, cost = 0;

        while (SPFA()) {

            augment(flow, cost);

        }

        return cost;

    }

    bool isvalid(int delta) {

        if (edges[G[s][0]].flow == 2)

            return true;

        return false;

    }

    void getpath(int x, int delta, vector<int>& v) {

        for (int i = 0; i < G[x].size(); i++) {

            edge& e = edges[G[x][i]];

            if (e.flow == 1 && !vis[e.to]) {

                vis[e.to] = true;

                v.push_back(e.to);

                getpath(e.to + delta, delta, v);

                break;

            }

        }

    }

    void getans(int delta, vector<int>& v1, vector<int>& v2) {

        memset(vis, false, sizeof(vis));

        v1.push_back(s); 

        v2.push_back(s);

        getpath(s + delta, delta, v1);

        getpath(s + delta, delta, v2);

    }

private:

    vector<edge> edges;

    vector<int> G[MAXN];

    int n, s, t, d[MAXN], p[MAXN], a[MAXN];

    bool vis[MAXN];

};



MCMF mcmf;

string city[MAXN];

map<string, int> my;



int main() {

    int n, v;

    cin >> n >> v;

    int s = 1, t = n + n;

    mcmf.initdata(t + 1);

    for (int i = 1; i <= n; i++) {

        cin >> city[i];

        my[city[i]] = i;

        if (i == 1 || i == n)

            mcmf.addedge(i, i+n, 2, -1);

        else

            mcmf.addedge(i, i+n, 1, -1);

    }

    for (int i = 0; i < v; i++) {

        string a, b;

        cin >> a >> b;

        int k1 = min(my[a], my[b]);

        int k2 = max(my[a], my[b]);

        if (k1 == 1 && k2 == n)

            mcmf.addedge(k1+n, k2, 2, 0);

        else

            mcmf.addedge(k1+n, k2, 1, 0);

    }

    int cost = mcmf.mincost(s, t);

    if (mcmf.isvalid(n)) {

        cost = -cost-2;

        cout << cost << endl;

        vector<int> v1;

        vector<int> v2;

        mcmf.getans(n, v1, v2);

        for (int i = 0; i < v1.size(); i++)

            cout << city[v1[i]] << endl;

        for (int i = v2.size() - 1; i >= 0; i--)

            cout << city[v2[i]] << endl;

    } else {

        cout << "No Solution!" << endl;

    }

    return 0;

}

你可能感兴趣的:(网络流)