思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大。所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个DAG(有向无环图),然后跑一遍DFS,不断加上遍历点的权值,如果到了网吧,则更新一遍答案,因为可以出去了。
求强连通分量时,如果low[u] == dfn[u],说明形成了一个新的强连通分量,且根为u。具体求强连通分量见:http://www.cnblogs.com/whatbeg/p/3776422.html
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <stack> using namespace std; #define N 100007 struct Edge { int v,next; }G[3*N],G2[3*N]; int first[3*N],first2[3*N],low[N],dfn[N]; int instk[N],bel[N],coin[N],iswb[N],wb[N],coin2[N]; int tot,tot2,n,m,Time,cnt,P,K,res; stack<int> stk; void addedge(Edge *G,int& tot,int *first,int u,int v) { G[tot].v = v; G[tot].next = first[u]; first[u] = tot++; } void Tarjan(int u) { low[u] = dfn[u] = ++Time; stk.push(u); instk[u] = 1; for(int i=first[u];i!=-1;i=G[i].next) { int v = G[i].v; if(!dfn[v]) //树边 { Tarjan(v); low[u] = min(low[u],low[v]); } else if(instk[v]) //回边 low[u] = min(low[u],dfn[v]); } if(low[u] == dfn[u]) { cnt++; int v; do { v = stk.top(); stk.pop(); if(iswb[v]) wb[cnt] = 1; instk[v] = 0; coin2[cnt] += coin[v]; bel[v] = cnt; if(v == P) P = cnt; }while(u != v); } } void dfs(int u,int sum) { sum += coin2[u]; if(wb[u]) res = max(res,sum); for(int i=first2[u];i!=-1;i=G2[i].next) { int v = G2[i].v; dfs(v,sum); } } int main() { int i,j,u,v; while(scanf("%d%d",&n,&m)!=EOF) { memset(first,-1,sizeof(first)); memset(first2,-1,sizeof(first2)); memset(G,0,sizeof(G)); memset(G2,0,sizeof(G2)); memset(iswb,0,sizeof(iswb)); memset(wb,0,sizeof(wb)); memset(instk,0,sizeof(instk)); memset(bel,-1,sizeof(bel)); memset(coin2,0,sizeof(coin2)); memset(low,0,sizeof(low)); memset(dfn,0,sizeof(dfn)); tot = tot2 = 0; Time = cnt = 0; while(!stk.empty()) stk.pop(); for(i=0;i<m;i++) { scanf("%d%d",&u,&v); addedge(G,tot,first,u,v); } for(i=1;i<=n;i++) scanf("%d",&coin[i]); scanf("%d",&P); scanf("%d",&K); for(i=0;i<K;i++) { scanf("%d",&v); iswb[v] = 1; } for(v=1;v<=n;v++) //Tarjan求强连通分量 { if(!dfn[v]) Tarjan(v); } for(i=1;i<=n;i++) //重建为一个DAG { for(j=first[i];j!=-1;j=G[j].next) { v = bel[G[j].v]; u = bel[i]; if(u != v) //如果相连点不是一个连通分量 addedge(G2,tot2,first2,u,v); //建桥 } } res = -1; dfs(P,0); printf("%d\n",res); } return 0; }