相机的校正感悟

 在你看到这篇博文的时候,希望你能先看下我的上一篇博文,对相关的知识点有所了解后再看这篇博文

  下面的几个函数就是实现相机校正的关键

  • addChessboardPoints() 函数 - 用于读入一系列的棋盘图像并检测角点;
  • calibrate() 函数 - 用于进行相机校正,得到相机的参数矩阵和畸变系数;
  • remap() 函数 - 用于根据相机校正结果修复图像的畸变;//主要靠这个函数实现校正initUndistortRectifyMap
  • addPoints() 函数 - addChessboardPoints() 在检测完角点后会调用这个函数。也可自己手动调用这个函数添加已知的角点位置和对应的空间坐标点。
main.c 
1
#include <QCoreApplication> 2 #include <iostream> 3 #include <iomanip> 4 #include <vector> 5 #include <opencv2/core/core.hpp> 6 #include <opencv2/imgproc/imgproc.hpp> 7 #include <opencv2/highgui/highgui.hpp> 8 #include <opencv2/features2d/features2d.hpp> 9 10 #include "CameraCalibrator.h" 11 12 int main() 13 { 14 15 cv::namedWindow("Image"); 16 cv::Mat image; 17 std::vector<std::string> filelist; 18 19 // generate list of chessboard image filename 20 for (int i=1; i<=20; i++) { 21 22 std::stringstream str; 23 str << "/home/bi/pic/chessboards/chessboard" << std::setw(2) << std::setfill('0') << i << ".jpg"; 24 std::cout << str.str() << std::endl; 25 26 filelist.push_back(str.str()); 27 image= cv::imread(str.str(),0);//直接变为灰度图 28 //cvtColor(image,image,CV_BGR2GRAY); 29 cv::imshow("Image",image); 30 31 cv::waitKey(1000); 32 } 33 34 // Create calibrator object 35 CameraCalibrator cameraCalibrator; 36 // add the corners from the chessboard 37 cv::Size boardSize(6,4); 38 cameraCalibrator.addChessboardPoints( 39 filelist, // filenames of chessboard image 40 boardSize); // size of chessboard 41 // calibrate the camera 42 // cameraCalibrator.setCalibrationFlag(true,true); 43 cameraCalibrator.calibrate(image.size()); 44 45 // Image Undistortion 46 image = cv::imread(filelist[6]); 47 cv::Mat uImage= cameraCalibrator.remap(image); 48 49 // display camera matrix 50 cv::Mat cameraMatrix= cameraCalibrator.getCameraMatrix(); 51 std::cout << " Camera intrinsic: " << cameraMatrix.rows << "x" << cameraMatrix.cols << std::endl; 52 std::cout << cameraMatrix.at<double>(0,0) << " " << cameraMatrix.at<double>(0,1) << " " << cameraMatrix.at<double>(0,2) << std::endl; 53 std::cout << cameraMatrix.at<double>(1,0) << " " << cameraMatrix.at<double>(1,1) << " " << cameraMatrix.at<double>(1,2) << std::endl; 54 std::cout << cameraMatrix.at<double>(2,0) << " " << cameraMatrix.at<double>(2,1) << " " << cameraMatrix.at<double>(2,2) << std::endl; 55 56 imshow("Original Image", image); 57 imshow("Undistorted Image", uImage); 58 59 cv::waitKey(); 60 return 0; 61 }

CameraCalibrator.h 

 

  • addChessboardPoints() 函数 - 用于读入一系列的棋盘图像并检测角点;
  • calibrate() 函数 - 用于进行相机校正,得到相机的参数矩阵和畸变系数;
  • remap() 函数 - 用于根据相机校正结果修复图像的畸变;//主要靠这个函数实现校正initUndistortRectifyMap
  • addPoints() 函数addChessboardPoints() 在检测完角点后会调用这个函数。也可自己手动调用这个函数添加已知的角点位置和对应的空间坐标点。

 

 1 #ifndef CAMERACALIBRATOR_H
 2 #define CAMERACALIBRATOR_H
 3 
 4 #include <vector>
 5 #include <iostream>
 6 
 7 #include <opencv2/core/core.hpp>
 8 #include "opencv2/imgproc/imgproc.hpp"
 9 #include "opencv2/calib3d/calib3d.hpp"
10 #include <opencv2/highgui/highgui.hpp>
11 
12 class CameraCalibrator {
13 
14     // input points
15     std::vector<std::vector<cv::Point3f>> objectPoints;
16     std::vector<std::vector<cv::Point2f>> imagePoints;
17     // output Matrices
18     cv::Mat cameraMatrix;
19     cv::Mat distCoeffs;
20     // flag to specify how calibration is done
21     int flag;
22     // used in image undistortion 
23     cv::Mat map1,map2; 
24     bool mustInitUndistort;
25 
26   public:
27     CameraCalibrator() : flag(0), mustInitUndistort(true) {};
28 
29     // Open the chessboard images and extract corner points
30     int addChessboardPoints(const std::vector<std::string>& filelist, cv::Size & boardSize);
31     // Add scene points and corresponding image points
32     void addPoints(const std::vector<cv::Point2f>& imageCorners, const std::vector<cv::Point3f>& objectCorners);
33     // Calibrate the camera
34     double calibrate(cv::Size &imageSize);
35     // Set the calibration flag
36     void setCalibrationFlag(bool radial8CoeffEnabled=false, bool tangentialParamEnabled=false);
37     // Remove distortion in an image (after calibration)
38     cv::Mat CameraCalibrator::remap(const cv::Mat &image);
39 
40     // Getters
41     cv::Mat getCameraMatrix() { return cameraMatrix; }
42     cv::Mat getDistCoeffs()   { return distCoeffs; }
43 };
44 
45 #endif // CAMERACALIBRATOR_H
View Code

 CameraCalibrator.cpp

  1 #include "CameraCalibrator.h"
  2 
  3 // Open chessboard images and extract corner points
  4 int CameraCalibrator::addChessboardPoints(
  5          const std::vector<std::string>& filelist, 
  6          cv::Size & boardSize) {
  7 
  8     // the points on the chessboard
  9     std::vector<cv::Point2f> imageCorners;
 10     std::vector<cv::Point3f> objectCorners;
 11 
 12     // 3D Scene Points:
 13     // Initialize the chessboard corners 
 14     // in the chessboard reference frame
 15     // The corners are at 3D location (X,Y,Z)= (i,j,0)
 16     for (int i=0; i<boardSize.height; i++) {
 17         for (int j=0; j<boardSize.width; j++) {
 18 
 19             objectCorners.push_back(cv::Point3f(i, j, 0.0f));
 20         }
 21     }
 22 
 23     // 2D Image points:
 24     cv::Mat image; // to contain chessboard image
 25     int successes = 0;
 26     // for all viewpoints
 27     for (int i=0; i<filelist.size(); i++) {
 28 
 29         // Open the image
 30         image = cv::imread(filelist[i],0);
 31 
 32         // Get the chessboard corners
 33         bool found = cv::findChessboardCorners(
 34                         image, boardSize, imageCorners);
 35 
 36         // Get subpixel accuracy on the corners
 37         cv::cornerSubPix(image, imageCorners, 
 38                   cv::Size(5,5), 
 39                   cv::Size(-1,-1), 
 40             cv::TermCriteria(cv::TermCriteria::MAX_ITER +
 41                           cv::TermCriteria::EPS, 
 42              30,        // max number of iterations 
 43              0.1));     // min accuracy
 44 
 45           // If we have a good board, add it to our data
 46           if (imageCorners.size() == boardSize.area()) {
 47 
 48             // Add image and scene points from one view
 49             addPoints(imageCorners, objectCorners);
 50             successes++;
 51           }
 52 
 53         //Draw the corners
 54         cv::drawChessboardCorners(image, boardSize, imageCorners, found);
 55         cv::imshow("Corners on Chessboard", image);
 56         cv::waitKey(100);
 57     }
 58 
 59     return successes;
 60 }
 61 
 62 // Add scene points and corresponding image points
 63 void CameraCalibrator::addPoints(const std::vector<cv::Point2f>& imageCorners, const std::vector<cv::Point3f>& objectCorners) {
 64 
 65     // 2D image points from one view
 66     imagePoints.push_back(imageCorners);          
 67     // corresponding 3D scene points
 68     objectPoints.push_back(objectCorners);
 69 }
 70 
 71 // Calibrate the camera
 72 // returns the re-projection error
 73 double CameraCalibrator::calibrate(cv::Size &imageSize)
 74 {
 75     // undistorter must be reinitialized
 76     mustInitUndistort= true;
 77 
 78     //Output rotations and translations
 79     std::vector<cv::Mat> rvecs, tvecs;
 80 
 81     // start calibration
 82     return 
 83      calibrateCamera(objectPoints, // the 3D points
 84                     imagePoints,  // the image points
 85                     imageSize,    // image size
 86                     cameraMatrix, // output camera matrix
 87                     distCoeffs,   // output distortion matrix
 88                     rvecs, tvecs, // Rs, Ts 
 89                     flag);        // set options
 90 //                    ,CV_CALIB_USE_INTRINSIC_GUESS);
 91 
 92 }
 93 
 94 // remove distortion in an image (after calibration)
 95 cv::Mat CameraCalibrator::remap(const cv::Mat &image) {
 96 
 97     cv::Mat undistorted;
 98 
 99     if (mustInitUndistort) { // called once per calibration
100     
101         cv::initUndistortRectifyMap(
102             cameraMatrix,  // computed camera matrix
103             distCoeffs,    // computed distortion matrix
104             cv::Mat(),     // optional rectification (none) 
105             cv::Mat(),     // camera matrix to generate undistorted
106             cv::Size(640,480),
107 //            image.size(),  // size of undistorted
108             CV_32FC1,      // type of output map
109             map1, map2);   // the x and y mapping functions
110 
111         mustInitUndistort= false;
112     }
113 
114     // Apply mapping functions
115     cv::remap(image, undistorted, map1, map2, 
116         cv::INTER_LINEAR); // interpolation type
117 
118     return undistorted;
119 }
120 
121 
122 // Set the calibration options
123 // 8radialCoeffEnabled should be true if 8 radial coefficients are required (5 is default)
124 // tangentialParamEnabled should be true if tangeantial distortion is present
125 void CameraCalibrator::setCalibrationFlag(bool radial8CoeffEnabled, bool tangentialParamEnabled) {
126 
127     // Set the flag used in cv::calibrateCamera()
128     flag = 0;
129     if (!tangentialParamEnabled) flag += CV_CALIB_ZERO_TANGENT_DIST;
130     if (radial8CoeffEnabled) flag += CV_CALIB_RATIONAL_MODEL;
131 }
View Code

 

 

findChessboardCorners

Finds the positions of internal corners of the chessboard.
C++: bool findChessboardCorners(InputArray image, Size patternSize, OutputArray corners, int
flags=CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE
)//如果找到了棋盘内部的角点,会返回true这个时候正好对应绘制角点的patternWasFound

Parameters
image – Source chessboard view. It must be an 8-bit grayscale or color image.
patternSize – Number of inner corners per a chessboard row and column ( patternSize
= cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
corners – Output array of detected corners.
flags – Various operation flags that can be zero or a combination of the following values:
– CV_CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image
to black and white, rather than a fixed threshold level (computed from the average
image brightness).
– CV_CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with
equalizeHist() before applying fixed or adaptive thresholding.
– CV_CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
– CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard
corners, and shortcut the call if none is found. This can drastically speed up the call in
the degenerate condition when no chessboard is observed.

drawChessboardCorners
Renders the detected chessboard corners.
C++: void drawChessboardCorners(InputOutputArray image, Size patternSize, InputArray corners, bool
patternWasFound)
Python: cv2.drawChessboardCorners(image, patternSize, corners, patternWasFound)! None
C: void cvDrawChessboardCorners(CvArr* image, CvSize patternSize, CvPoint2D32f* corners, int
count, int patternWasFound)
Python: cv.DrawChessboardCorners(image, patternSize, corners, patternWasFound)! None
Parameters
image – Destination image. It must be an 8-bit color image.
patternSize – Number of inner corners per a chessboard row and column (patternSize =
cv::Size(points_per_row,points_per_column)).//注意这里表示的是棋盘的大小,别弄错了
corners – Array of detected corners, the output of findChessboardCorners.
patternWasFound – Parameter indicating whether the complete board was found or not.
The return value of findChessboardCorners() should be passed here.
The function draws individual chessboard corners detected either as red circles if the board was not found, or as
colored corners connected with lines if the board was found.

initUndistortRectifyMap
Computes the undistortion and rectification transformation map.
C++: void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs, InputArray R,
InputArray newCameraMatrix, Size size, int m1type, OutputArray
map1, OutputArray map2)

Parameters 

cameraMatrix – Input camera matrix A =

cameraMatrix //不用解释了吧 相机的内参矩阵

distCoeffs畸变矩阵 – Input vector of distortion coefficients (k1; k2; p1; p2[; k3[; k4; k5; k6]]) of 4,

5, or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

R代表的是旋转矩阵

R – Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , computed
by stereoRectify() can be passed here. If the matrix is empty, the identity transformation
is assumed. In cvInitUndistortMap R assumed to be an identity matrix.


newCameraMatrix – New camera matrix A0 =

size – Undistorted image size.
m1type – Type of the first output map that can be CV_32FC1 or CV_16SC2 . See
convertMaps() for details.
map1 – The first output map.//即是 u

map2 – The second output map.//即是 v

 

相机的校正感悟_第1张图片
相机的校正感悟_第2张图片

你可能感兴趣的:(感悟)