以下分析基于mysql5.6.10
information_schema.statistics
mysql.innodb_table_stats
mysql.innodb_index_stats
先初始化数据,我们看看这些表里存了些什么
drop table t1; create table t1(c1 int,c2 int,c3 int,c4 int, primary key(c1), unique key idx1(c2), key idx2(c3,c4)); insert into t1 values(1,1,1,1); insert into t1 values(2,2,1,2); insert into t1 values(3,3,1,3); insert into t1 values(4,4,1,4); insert into t1 values(5,5,2,1); insert into t1 values(6,6,2,1);
mysql> analyze table t1; +---------+---------+----------+----------+ | Table | Op | Msg_type | Msg_text | +---------+---------+----------+----------+ | test.t1 | analyze | status | OK | +---------+---------+----------+----------+ 1 row in set (0.46 sec) mysql> show index from t1; +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | t1 | 0 | PRIMARY | 1 | c1 | A | 6 | NULL | NULL | | BTREE | | | | t1 | 0 | idx1 | 1 | c2 | A | 6 | NULL | NULL | YES | BTREE | | | | t1 | 1 | idx2 | 1 | c3 | A | 6 | NULL | NULL | YES | BTREE | | | | t1 | 1 | idx2 | 2 | c4 | A | 6 | NULL | NULL | YES | BTREE | | | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 4 rows in set (0.00 sec) mysql> select * from mysql.innodb_table_stats where table_name='t1'; +---------------+------------+---------------------+--------+----------------------+--------------------------+ | database_name | table_name | last_update | n_rows | clustered_index_size | sum_of_other_index_sizes | +---------------+------------+---------------------+--------+----------------------+--------------------------+ | test | t1 | 2013-08-22 21:23:07 | 6 | 1 | 2 | +---------------+------------+---------------------+--------+----------------------+--------------------------+ 1 row in set (0.00 sec) mysql> select * from mysql.innodb_index_stats where table_name='t1'; +---------------+------------+------------+---------------------+--------------+------------+-------------+-----------------------------------+ | database_name | table_name | index_name | last_update | stat_name | stat_value | sample_size | stat_description | +---------------+------------+------------+---------------------+--------------+------------+-------------+-----------------------------------+ | test | t1 | PRIMARY | 2013-08-22 21:23:07 | n_diff_pfx01 | 6 | 1 | c1 | | test | t1 | PRIMARY | 2013-08-22 21:23:07 | n_leaf_pages | 1 | NULL | Number of leaf pages in the index | | test | t1 | PRIMARY | 2013-08-22 21:23:07 | size | 1 | NULL | Number of pages in the index | | test | t1 | idx1 | 2013-08-22 21:23:07 | n_diff_pfx01 | 6 | 1 | c2 | | test | t1 | idx1 | 2013-08-22 21:23:07 | n_leaf_pages | 1 | NULL | Number of leaf pages in the index | | test | t1 | idx1 | 2013-08-22 21:23:07 | size | 1 | NULL | Number of pages in the index | | test | t1 | idx2 | 2013-08-22 21:23:07 | n_diff_pfx01 | 2 | 1 | c3 | | test | t1 | idx2 | 2013-08-22 21:23:07 | n_diff_pfx02 | 5 | 1 | c3,c4 | | test | t1 | idx2 | 2013-08-22 21:23:07 | n_diff_pfx03 | 6 | 1 | c3,c4,c1 | | test | t1 | idx2 | 2013-08-22 21:23:07 | n_leaf_pages | 1 | NULL | Number of leaf pages in the index | | test | t1 | idx2 | 2013-08-22 21:23:07 | size | 1 | NULL | Number of pages in the index | +---------------+------------+------------+---------------------+--------------+------------+-------------+-----------------------------------+ 11 rows in set (1.51 sec)
其中 show index from t1; 实际上访问的是information_schema.statistics表。
等价于select * from information_schema.statistics where table_name='t1';
我们来试图将统计字典表中的字段和源码中的统计项联系起来,以下是源码中的统计信息项
unsigned n_uniq:10;/*!< number of fields from the beginning which are enough to determine an index entry uniquely */ ib_uint64_t* stat_n_diff_key_vals; /*!< approximate number of different key values for this index, for each n-column prefix where 1 <= n <= dict_get_n_unique(index) (the array is indexed from 0 to n_uniq-1); we periodically calculate new estimates */ ib_uint64_t* stat_n_sample_sizes; /*!< number of pages that were sampled to calculate each of stat_n_diff_key_vals[], e.g. stat_n_sample_sizes[3] pages were sampled to get the number stat_n_diff_key_vals[3]. */ ib_uint64_t* stat_n_non_null_key_vals; /* approximate number of non-null key values for this index, for each column where 1 <= n <= dict_get_n_unique(index) (the array is indexed from 0 to n_uniq-1); This is used when innodb_stats_method is "nulls_ignored". */ ulint stat_index_size; /*!< approximate index size in database pages */ ulint stat_n_leaf_pages; /*!< approximate number of leaf pages in the index tree */
根据注释,很容易看出联系,其中
对于 idx1(c1)
n_uniq=1 即c1
stat_n_diff_key_vals[0]=6
对于 idx2(c2,c3)
n_uniq=3 即(c2,c3,c1)
stat_n_diff_key_vals[0]=2 //idx2前缀c2不同的个数
stat_n_diff_key_vals[1]=5 //idx2前缀c2,c3不同的个数
stat_n_diff_key_vals[2]=6 //idx2前缀c2,c3,c1不同的个数
系统参数
innodb_stats_auto_recalc innodb_stats_method innodb_stats_on_metadata innodb_stats_persistent innodb_stats_persistent_sample_pages innodb_stats_sample_pages innodb_stats_transient_sample_pages
参考:http://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html
表参数,建表是指定
| STATS_AUTO_RECALC [=] {DEFAULT|0|1} | STATS_PERSISTENT [=] {DEFAULT|0|1}
参考:http://docs.oracle.com/cd/E17952_01/refman-5.6-en/create-table.html
这里看到统计信息有两种类别persistent和transient,这里先大致介绍下区别,具体实现下见下章节
1 persistent 会将统计信息持久化到mysql.innodb_table_stats ,mysql.innodb_index_stats表中
2 persistent和transient统计算法不同,persistent比transient统计相对精确,当然也更耗时
Innodb有一个后台线程dict_stats_thread,专门用于更新persistent类型的统计信息
innodb_stats_auto_recalc 开启与否只会影响persistent类型的统计。
相关函数dict_stats_update_transient
获取stat_n_leaf_pages,stat_index_size比较简单,只需从B树的leaf segment和 no-leaf segment的描述项中获取,只需一次io。时B数某一时时刻快照的信息,这两个值是准确的。
参见
btr_get_size
fseg_n_reserved_pages
stat_n_diff_key_vals的获取是通过采样统计出来的,是一个统计值。
参见 btr_estimate_number_of_different_key_vals
/* We sample some pages in the index to get an estimate */ for (i = 0; i < n_sample_pages; i++) { mtr_start(&mtr);
btr_cur_open_at_rnd_pos(index, BTR_SEARCH_LEAF, &cursor, &mtr); page = btr_cur_get_page(&cursor); rec = page_rec_get_next(page_get_infimum_rec(page)); if (!page_rec_is_supremum(rec)) { not_empty_flag = 1; offsets_rec = rec_get_offsets(rec, index, offsets_rec,ULINT_UNDEFINED, &heap); if (n_not_null != NULL) { btr_record_not_null_field_in_rec( n_cols, offsets_rec, n_not_null); } } while (!page_rec_is_supremum(rec)) { rec_t* next_rec = page_rec_get_next(rec); if (page_rec_is_supremum(next_rec)) { total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec); break; } matched_fields = 0; matched_bytes = 0; offsets_next_rec = rec_get_offsets(next_rec, index, offsets_next_rec,ULINT_UNDEFINED,&heap); cmp_rec_rec_with_match(rec, next_rec, offsets_rec, offsets_next_rec, index, stats_null_not_equal, &matched_fields, &matched_bytes); for (j = matched_fields; j < n_cols; j++) { /* We add one if this index record has a different prefix from the previous */ n_diff[j]++; } if (n_not_null != NULL) { btr_record_not_null_field_in_rec( n_cols, offsets_next_rec, n_not_null); } total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec); rec = next_rec; { ulint* offsets_tmp = offsets_rec; offsets_rec = offsets_next_rec; offsets_next_rec = offsets_tmp; } } if (n_cols == dict_index_get_n_unique_in_tree(index)) { if (btr_page_get_prev(page, &mtr) != FIL_NULL || btr_page_get_next(page, &mtr) != FIL_NULL) { n_diff[n_cols - 1]++; } } mtr_commit(&mtr);
}
从根节点页开始,随机取一个记录,再从此记录找到其指向的下层页,从下层也随机取一个记录,这样依次向下层取记录,直到叶子节点页。
每次采样一页读取的页数为B树的深度。
通过cmp_rec_rec_with_match比较页内前后记录后,后面不匹配的列都认为diff,记入n_diff
见后面章节
相关函数dict_stats_update_persistent
Persistent和transient统计不同的地方在于stat_n_diff_key_vals的计算
dict_stats_analyze_index关键代码如下
for (n_prefix = n_uniq; n_prefix >= 1; n_prefix--) { /* Commit the mtr to release the tree S lock to allow other threads to do some work too. */ mtr_commit(&mtr); mtr_start(&mtr); mtr_s_lock(dict_index_get_lock(index), &mtr); if (root_level != btr_height_get(index, &mtr)) {
break; } if (level_is_analyzed && (n_diff_on_level[n_prefix - 1] >= N_DIFF_REQUIRED(index) || level == 1)) { goto found_level; } /* search for a level that contains enough distinct records */ if (level_is_analyzed && level > 1) { /* if this does not hold we should be on "found_level" instead of here */ ut_ad(n_diff_on_level[n_prefix - 1] < N_DIFF_REQUIRED(index)); level--; level_is_analyzed = false; } /* descend into the tree, searching for "good enough" level */ for (;;) { /* make sure we do not scan the leaf level accidentally, it may contain too many pages */ ut_ad(level > 0);
/* scanning the same level twice is an optimization bug */ ut_ad(!level_is_analyzed); /* Do not scan if this would read too many pages. Here we use the following fact: the number of pages on level L equals the number of records on level L+1, thus we deduce that the following call would scan total_recs pages, because total_recs is left from the previous iteration when we scanned one level upper or we have not scanned any levels yet in which case total_recs is 1. */ if (total_recs > N_SAMPLE_PAGES(index)) { /* if the above cond is true then we are
not at the root level since on the root level total_recs == 1 (set before we enter the n-prefix loop) and cannot be > N_SAMPLE_PAGES(index) */ ut_a(level != root_level); /* step one level back and be satisfied with whatever it contains */
level++; level_is_analyzed = true; break; } dict_stats_analyze_index_level(index,level,n_diff_on_level,&total_recs,&total_pages,n_diff_boundaries,&mtr); level_is_analyzed = true; if (n_diff_on_level[n_prefix - 1] >= N_DIFF_REQUIRED(index) || level == 1) { /* we found a good level with many distinct records or we have reached the last level we could scan */ break; } level--; level_is_analyzed = false; } found_level: dict_stats_analyze_index_for_n_prefix( index, level, total_recs, n_prefix, n_diff_on_level[n_prefix - 1], &n_diff_boundaries[n_prefix - 1], &mtr); }
1 从根节点开始向下查找到合适的B树的某层L,条件为
if (total_recs > N_SAMPLE_PAGES(index))
L不可以是叶子层
2 从层L开始,将n_diff_boundaries分为N段,N为采样数。分别从N个段中,随机取N个记录,这N个记录依次向下层查找到合适的采样页。这个采样页不一定时叶子页。
n_diff:本层不同值个数
total_recs:本层总记录数
total_pages:本层总页数
n_diff_boundaries:出现不同值的边界位置数组,数组长度为n_diff,0<= n_diff_boundaries<total_recs-1
for (n_prefix = n_uniq; n_prefix >= 1; n_prefix--)
为了dict_stats_analyze_index_level不从头根层开始向下分析,而是从当前层开始
dict_stats_analyze_index_for_n_prefix
分段数
n_recs_to_dive_below = ut_min(N_SAMPLE_PAGES(index), n_diff_for_this_prefix);
取分段中随机记录
left = n_diff_for_this_prefix * i / n_recs_to_dive_below; right = n_diff_for_this_prefix * (i + 1) / n_recs_to_dive_below - 1; rnd = ut_rnd_interval(0, (ulint) (right - left));
从随机记录开始向下取样,统计样页的n_diff,样页不一定是叶子页
dict_stats_analyze_index_below_cur
当当前层的页的记录的n_pre都一致时,下层页也应一致。因此不需再向下层取样。
如果设置innodb_stats_persistent,先从统计字典表中读取,如果读取不到则通过persistent方式更新统计信息
否则通过transient方式更新统计信息
如果设置innodb_stats_persistent,则通过persistent方式更新统计信息,否则通过transient方式更新统计信息
表距离上一次更新统计信息,发生变化的行数超过当前行数1/16时,通过transient方式更新统计信息
表距离上一次更新统计信息,发生变化的行数超过当前行数%10, 且设置了innodb_stats_auto_recalc和innodb_stats_persistent,通过persistent方式更新统计信息
MRR http://dev.mysql.com/doc/refman/5.6/en/mrr-optimization.html
ROR(RowidOrderedRetrieva)
GROUP
优化是会用到,相关函数如下,这块后续深入下
multi_range_read_info_const
ror_scan_selectivity
cost_group_min_max
Btr_get_size取到的是ret,而不是used.
它们的区别是ret:segment中的所有页,包括一些free页
User: segment中已使用的页
ret >used
Free页即不用于B树页,也不用于externer页,因此stat_index_size不应包括free页。这应该算是个bug吧。应用used统计。
*used = mtr_read_ulint(inode + FSEG_NOT_FULL_N_USED, MLOG_4BYTES, mtr) + FSP_EXTENT_SIZE * flst_get_len(inode + FSEG_FULL, mtr) + fseg_get_n_frag_pages(inode, mtr); ret = fseg_get_n_frag_pages(inode, mtr) + FSP_EXTENT_SIZE * flst_get_len(inode + FSEG_FREE, mtr) + FSP_EXTENT_SIZE * flst_get_len(inode + FSEG_NOT_FULL, mtr) + FSP_EXTENT_SIZE * flst_get_len(inode + FSEG_FULL, mtr);
读了这段代码发现,发现external page 属于leaf segment;
total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec);
external page 和叶子页公用一个segment, external page和叶子页在同一个extent内混合出现,让叶子页在物理上更离散。
1 会影响只查非大字段查询
2 在某些情况下MRR显得很无力
3 统计信息计算external page导致统计偏差
解决方法:external page可以用单独的segment管理
transient 采样比较简单,但过于随机,极端情况下会出现采集到同一页的情况。
Persistent 方式做到了尽量采集不同的值,并且不会出现采集到同一页的情况。Persistent 方式会读取b树前N(N>0,即不会统计叶子层) 层所有页和记录。
假设100条记录的分布如下
91个0 加上 1 2 3 4 5 6 7 8 9
假设采样10页
按Persistent逻辑采样记录为 0 1 2 3 4 5 6 7 8 9 n_diff=9
按transient逻辑采样很大可能结果为 9个0 加 1 n_diff=2
显然 Persistent会统计比transient统计要精确。
n_recs_to_dive_below = ut_min(N_SAMPLE_PAGES(index), n_diff_for_this_prefix);
对于n_diff_for_this_prefix< N_SAMPLE_PAGES(index),这时候的采样数为n_diff_for_this_prefix,采样数过少,会导致偏差。
此时应仍然采集N_SAMPLE_PAGES(index)个页,换以下统计方式
1 可以统计n_diff_boundaries之间的区间大小,因为n_diff_for_this_prefix较小,所以这个统计成本较小
2 按区间比例来分配,区间越小,采样的页数相对应更多
3 总共采集N_SAMPLE_PAGES(index)个页
4 以上纯属YY