Volley的RequestQueue用来缓存请求处理器CacheDispatch和网络请求处理器NetworkDispatch来处理Request的。当我们调用RequestQueue.start()是,两个处理器开始运行起来,等待Request的到来。
public void start() { stop(); // Make sure any currently running dispatchers are stopped. // Create the cache dispatcher and start it. mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery); mCacheDispatcher.start(); // Create network dispatchers (and corresponding threads) up to the pool size. for (int i = 0; i < mDispatchers.length; i++) { NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork, mCache, mDelivery); mDispatchers[i] = networkDispatcher; networkDispatcher.start(); } }
Volley先读缓存然后,没有cache hit的话再从网络上获取,所以先启动CacheDispatcher,然后启动NetworkDispatcher。不过在启动处理器前先调用stop()函数清除掉以前RequestQueue里的过期的Dispatcher(Dispatcher都是继承Thread)。以防影响性能。Volley启动一个CacheDispatcher和4个NetworkDispatcher,之所以这样设计,个人人为是主要考虑到网络图片的下载,所以利用多个NetworkDispatcher来处理网络请求。然后看一下stop()函数。
public void stop() { if (mCacheDispatcher != null) { mCacheDispatcher.quit(); } for (int i = 0; i < mDispatchers.length; i++) { if (mDispatchers[i] != null) { mDispatchers[i].quit(); } } }
调用Dispatcher的quit()函数来结束线程。以NetworkDispatcher.quit()为例:
public void quit() { mQuit = true; interrupt(); }
函数将mQuit变量置为true。为什么要这样做,因为在networkdispatcher线程中的中断异常处理中,判断mQuit的值,如果真,则退出循环,结束线程。否则continue,继续从Queue中去取Request处理。
try { // Take a request from the queue. request = mQueue.take(); } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; }
接下来,看下RequestQueue的add函数。
public Request add(Request request) { // Tag the request as belonging to this queue and add it to the set of current requests. request.setRequestQueue(this); synchronized (mCurrentRequests) { mCurrentRequests.add(request); } // Process requests in the order they are added. request.setSequence(getSequenceNumber()); request.addMarker("add-to-queue"); // If the request is uncacheable, skip the cache queue and go straight to the network. if (!request.shouldCache()) { mNetworkQueue.add(request); return request; } // Insert request into stage if there's already a request with the same cache key in flight. synchronized (mWaitingRequests) { String cacheKey = request.getCacheKey(); if (mWaitingRequests.containsKey(cacheKey)) { // There is already a request in flight. Queue up. Queue<Request> stagedRequests = mWaitingRequests.get(cacheKey); if (stagedRequests == null) { stagedRequests = new LinkedList<Request>(); } stagedRequests.add(request); mWaitingRequests.put(cacheKey, stagedRequests); if (VolleyLog.DEBUG) { VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey); } } else { // Insert 'null' queue for this cacheKey, indicating there is now a request in // flight. mWaitingRequests.put(cacheKey, null); mCacheQueue.add(request); } return request; } }
首先将Request加入到mCurrentRequests中,因为存在多个线程竞争的问题,在这个代码块上进行了同步。然后request.setSequence().为当前Request分配一个序列号,为什么这样做,因为我们下面要将Request放到NetworkQueue中或者CacheQueue中,这两个队列都是PriorityBlockingQueue,里面的元素是根据自定义的权重来排序的。PriorityBlockingQueue里的元素须实现Comparable接口,来看下我们这里的Requeset的实现:
@Override public int compareTo(Request<T> other) { Priority left = this.getPriority(); Priority right = other.getPriority(); // High-priority requests are "lesser" so they are sorted to the front. // Equal priorities are sorted by sequence number to provide FIFO ordering. return left == right ? this.mSequence - other.mSequence : right.ordinal() - left.ordinal(); }
Request的策略是现根据每个Request的Priority来判断,如果两个Request的Priority相同,那么载根据两个Request的Sequence来进行判断队列里的先后顺序。
1 public enum Priority { 2 LOW, 3 NORMAL, 4 HIGH, 5 IMMEDIATE 6 }
给当前Request加上序列后,判断一下当前Request是否需要缓存,如果不需要则直接把Request加入到NetworkQueue队列里。如果需要缓存,取出Request的缓存键,从mWaitingRequests里看下有没有Request的缓存键.在RequestQueue中有四个队列。mCurrentRequests,mWaitingRequests,mCacheQueue,mNetworkQueue。每当一个请求到来时,先加入到mCurrentRequests,然后判断当前Request是否需要缓存,如果不用缓存的Request,则直接加入到mNetworkQueue队列中等待网络处理器(NetWorkDispatcher)去处理。如果需要缓存的话,根据Request获取相应的cacheKey,如果cacheKey不存在的话,说明这个需要缓存的Request是第一次请求。那么将cacheKey放入到mWaitingRequests队列里。(这里插播一下,mCurrentRequests存放的是所有交由RequestQueue处理的Request,mWaitingRequests里存放的是mCacheQueue里已经有相同url的Request,mWatiingRequests的出现就是为了避免不必要的网络数据获取),并将Request放入到mCacheQueue中以做处理。
1 // Insert 'null' queue for this cacheKey, indicating there is now a request in 2 // flight. 3 mWaitingRequests.put(cacheKey, null); 4 mCacheQueue.add(request);
如果cacheKey存在的话,说明已经有相同的Request正在处理(这里的cacheKey是通过getUrl()得到的,也就是创建Request时的url)。这时将此Request放入到mWaitingRequest队列中等待In-flight Request的处理结果。
add完然后看finish(Request req);
1 void finish(Request request) { 2 // Remove from the set of requests currently being processed. 3 synchronized (mCurrentRequests) { 4 mCurrentRequests.remove(request); 5 } 6 7 if (request.shouldCache()) { 8 synchronized (mWaitingRequests) { 9 String cacheKey = request.getCacheKey(); 10 Queue<Request> waitingRequests = mWaitingRequests.remove(cacheKey); 11 if (waitingRequests != null) { 12 if (VolleyLog.DEBUG) { 13 VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.", 14 waitingRequests.size(), cacheKey); 15 } 16 // Process all queued up requests. They won't be considered as in flight, but 17 // that's not a problem as the cache has been primed by 'request'. 18 mCacheQueue.addAll(waitingRequests); 19 } 20 } 21 } 22 }
首先先从mCurrentRequests集合中remove掉当前Request,然后在mWaitingRequests中去掉当前的Request.然后将此Request对应的mWaitingRequest中存储的Request放到mCacheQueue中等待处理(因为此时对应的url的网络数据已经加载到本地,所以这些mWaitingRequests里的Request被处理时直接从本地解析,不用耗时的网络获取一遍)。
RequestQueue类中还有一个CancelAll()函数,它的作用是根据指定的Request tag来删除响应的Request.
public void cancelAll(RequestFilter filter) { synchronized (mCurrentRequests) { for (Request<?> request : mCurrentRequests) { if (filter.apply(request)) { request.cancel(); } } } } /** * Cancels all requests in this queue with the given tag. Tag must be non-null * and equality is by identity. */ public void cancelAll(final Object tag) { if (tag == null) { throw new IllegalArgumentException("Cannot cancelAll with a null tag"); } cancelAll(new RequestFilter() { @Override public boolean apply(Request<?> request) { return request.getTag() == tag; } }); }