以下是人工智能训练师处理业务数据的完整技术方案,结合Python代码示例和最佳实践:
graph TD
A[数据理解] --> B[数据清洗]
B --> C[特征工程]
C --> D[数据分割]
D --> E[数据增强]
E --> F[数据存储]
import pandas as pd
import sweetviz as sv
# 加载数据
df = pd.read_csv("business_data.csv")
# 自动化EDA
report = sv.analyze(df)
report.show_html("data_analysis.html")
# 关键统计量
print(df.describe(include='all'))
print("\n缺失值统计:\n", df.isnull().sum())
print("\n数据类型:\n", df.dtypes)
class DataCleaner:
def __init__(self, df):
self.df = df.copy()
def handle_missing(self, strategy='auto'):
"""智能处理缺失值"""
if strategy == 'auto':
for col in self.df.columns:
if self.df[col].dtype == 'object':
self.df[col].fillna('Unknown', inplace=True)
else:
if self.df[col].isnull().mean() < 0.1:
self.df[col].fillna(self.df[col].median(), inplace=True)
else:
self.df.drop(columns=col, inplace=True)
return self.df
def remove_outliers(self, method='iqr'):
"""处理异常值"""
numeric_cols = self.df.select_dtypes(include=np.number).columns
for col in numeric_cols:
q1 = self.df[col].quantile(0.25)
q3 = self.df[col].quantile(0.75)
iqr = q3 - q1
self.df = self.df[(self.df[col] >= q1 - 1.5*iqr) &
(self.df[col] <= q3 + 1.5*iqr)]
return self.df
# 使用示例
cleaner = DataCleaner(df)
cleaned_df = cleaner.handle_missing().remove_outliers()
from sklearn.preprocessing import FunctionTransformer
from sklearn.compose import ColumnTransformer
# 时间特征提取
def extract_time_features(X):
return pd.DataFrame({
'hour': X.dt.hour,
'day_of_week': X.dt.dayofweek,
'is_weekend': X.dt.dayofweek >= 5
})
# 组合特征生成
preprocessor = ColumnTransformer(
transformers=[
('time', FunctionTransformer(extract_time_features), ['timestamp']),
('text', TfidfVectorizer(max_features=100), 'product_description'),
('numeric', StandardScaler(), ['price', 'quantity'])
],
remainder='drop'
)
# 保存预处理管道
joblib.dump(preprocessor, 'feature_pipeline.pkl')
from sklearn.model_selection import TimeSeriesSplit
# 时间序列数据分割
tscv = TimeSeriesSplit(n_splits=5)
for train_index, test_index in tscv.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
# 常规数据分割
X_train, X_val, y_train, y_val = train_test_split(
X, y,
test_size=0.2,
stratify=y, # 保持类别分布
random_state=42
)
from imblearn.over_sampling import SMOTENC
# 针对混合类型数据的过采样
categorical_features = [0, 2, 5] # 分类特征索引
smote_nc = SMOTENC(categorical_features=categorical_features,
sampling_strategy=0.5)
X_res, y_res = smote_nc.fit_resample(X_train, y_train)
import tensorflow as tf
# 构建用户行为序列
def create_behavior_sequences(df, seq_length=10):
return tf.keras.preprocessing.sequence.pad_sequences(
df.groupby('user_id')['item_id'].apply(list),
maxlen=seq_length,
padding='post'
)
# 生成嵌入层
item_embedding = tf.keras.layers.Embedding(
input_dim=num_items+1,
output_dim=64,
mask_zero=True
)
from transformers import AutoTokenizer
# 医学文本预处理
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
medical_notes = df['clinical_text'].tolist()
# 动态截断和批处理
encoded = tokenizer.batch_encode_plus(
medical_notes,
max_length=256,
padding='max_length',
truncation=True,
return_tensors='tf'
)
import dvc.api
with dvc.api.open(
'data/processed/train.csv',
repo='https://github.com/yourorg/data-repo'
) as f:
train_data = pd.read_csv(f)
# 数据版本追踪
data_version = dvc.api.get_url(
'data/processed/train.csv',
repo='https://github.com/yourorg/data-repo'
)
from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
spark = SparkSession.builder.appName("BusinessData").getOrCreate()
# 分布式特征处理
df_spark = spark.read.parquet("s3a://data-lake/raw/")
assembler = VectorAssembler(
inputCols=["feature1", "feature2"],
outputCol="features"
)
processed = assembler.transform(df_spark)
from great_expectations import Dataset
# 定义数据质量规则
dataset = Dataset.from_pandas(df)
results = dataset.expect_table_row_count_to_be_between(1000, 10000)
results += dataset.expect_column_values_to_match_regex("email", r".+@.+\..+")
# 生成质量报告
validation_result = dataset.validate()
validation_result.save_as_html("data_quality_report.html")
工具推荐:
处理原则:
性能优化:
# 使用并行处理
from joblib import Parallel, delayed
def process_chunk(chunk):
return chunk.apply(complex_transformation)
results = Parallel(n_jobs=4)(
delayed(process_chunk)(df[i:i+1000])
for i in range(0, len(df), 1000)
)
# 构造时间窗口特征
def create_window_features(df, customer_id, window_size='30D'):
return df.groupby(customer_id).rolling(window_size).agg({
'transaction_amount': ['mean', 'sum'],
'login_count': 'sum'
}).reset_index()
# 处理层次结构数据
from hts import HTSRegressor
# 构建层次结构
hierarchy = {
'total': ['region'],
'region': ['state'],
'state': ['store']
}
model = HTSRegressor(model='prophet', revision_method='OLS')
model.fit(train_data, hierarchy)
from albumentations import (
Compose, RandomRotate90, Flip, ShiftScaleRotate,
RandomBrightnessContrast, HueSaturationValue
)
aug = Compose([
RandomRotate90(),
Flip(),
ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=15),
RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
HueSaturationValue()
])
def augment_image(image):
return aug(image=image)['image']
通过以上方案,人工智能训练师可以:
实际项目落地时建议:
完整项目示例参考:Business Data Processing Toolkit(示例仓库)
from alibi_detect.cd import ChiSquareDrift
# 初始化检测器
cd = ChiSquareDrift(X_ref, p_val=0.05)
# 每日检测数据漂移
def check_drift(new_data):
preds = cd.predict(new_data)
if preds['data']['is_drift'] == 1:
send_alert(f"数据分布发生漂移: {preds['data']['distance']}")
return preds
# 可视化漂移趋势
plt.plot(drift_scores)
plt.xlabel('时间窗口')
plt.ylabel('漂移分数')
plt.title('数据分布漂移趋势')
import shap
# 定期计算特征重要性
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_val)
# 生成特征重要性报告
shap.summary_plot(shap_values, X_val, plot_type="bar")
# 监控特征重要性变化
historical_importance = load_historical_importance()
current_importance = pd.Series(shap_values.mean(axis=0), index=X.columns)
alert_threshold = 0.2 # 重要性变化超过20%触发告警
for feat in X.columns:
change = abs(current_importance[feat] - historical_importance[feat])
if change > alert_threshold:
trigger_alert(f"特征 {feat} 重要性变化达 {change:.1%}")
from presidio_analyzer import AnalyzerEngine
from presidio_anonymizer import AnonymizerEngine
# 初始化隐私检测引擎
analyzer = AnalyzerEngine()
anonymizer = AnonymizerEngine()
def anonymize_text(text):
# 检测敏感信息
results = analyzer.analyze(text=text, language='zh')
# 执行匿名化
anonymized = anonymizer.anonymize(
text=text,
analyzer_results=results
)
return anonymized.text
# 处理数据框中的文本列
df['customer_feedback'] = df['customer_feedback'].apply(anonymize_text)
from auditlog.models import AuditlogHistoryField
from django.db import models
class CustomerData(models.Model):
name = models.CharField(max_length=100)
phone = models.CharField(max_length=20)
history = AuditlogHistoryField()
# 查询审计日志
def get_data_access_log(user_id):
return Auditlog.objects.filter(
actor=user_id,
content_type=ContentType.objects.get_for_model(CustomerData)
).order_by('-timestamp')
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime
default_args = {
'owner': 'ai_team',
'retries': 3,
'retry_delay': timedelta(minutes=5)
}
dag = DAG(
'daily_data_processing',
default_args=default_args,
schedule_interval='@daily',
catchup=False
)
extract_task = PythonOperator(
task_id='extract_raw_data',
python_callable=extract_from_source,
dag=dag
)
transform_task = PythonOperator(
task_id='transform_data',
python_callable=run_feature_engineering,
dag=dag
)
validate_task = PythonOperator(
task_id='validate_quality',
python_callable=execute_data_validation,
dag=dag
)
load_task = PythonOperator(
task_id='load_to_warehouse',
python_callable=load_to_database,
dag=dag
)
extract_task >> transform_task >> validate_task >> load_task
from tenacity import retry, stop_after_attempt, wait_exponential
class DataPipeline:
@retry(stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10))
def process_chunk(self, chunk):
try:
transformed = self.transformer.transform(chunk)
self.loader.load(transformed)
self.checkpoint.log_success(chunk.id)
except Exception as e:
self.checkpoint.rollback()
logger.error(f"处理失败: {str(e)}")
raise
def checkpoint_rollback(self):
"""回滚到最近成功状态"""
last_success = self.checkpoint.get_last_success()
self.db.restore_snapshot(last_success)
self.cache.clear()
from autofeat import AutoFeatRegressor
# 自动生成组合特征
model = AutoFeatRegressor()
X_train_new = model.fit_transform(X_train, y_train)
X_test_new = model.transform(X_test)
# 查看生成的特征
print(f"原始特征数: {X_train.shape[1]}")
print(f"新特征数: {X_train_new.shape[1]}")
print("重要衍生特征:", model.new_feat_names[:5])
from sdv.tabular import CTGAN
# 训练合成模型
synthesizer = CTGAN(epochs=100)
synthesizer.fit(real_data)
# 生成合成数据
synthetic_data = synthesizer.sample(num_rows=10000)
# 验证数据质量
from sdv.evaluation import evaluate
quality_score = evaluate(synthetic_data, real_data)
print(f"数据质量评分: {quality_score:.2f}/1")
from pydocmd import generate
# 生成数据字典文档
def generate_data_dictionary(df):
template = """
# 数据字典
{% for col in columns %}
## {
{ col.name }}
- **类型**: {
{ col.dtype }}
- **描述**: {
{ col.description }}
- **示例值**: {
{ col.example }}
{% endfor %}
"""
return render_template(template, columns=df.columns)
# 集成到CI/CD流程
if __name__ == "__main__":
df = load_production_data()
docs = generate_data_dictionary(df)
with open("docs/data_dictionary.md", "w") as f:
f.write(docs)
import feast
# 定义特征仓库
project = feast.FeatureStore("feature_repo/")
# 注册特征视图
transaction_features = feast.FeatureView(
name="transaction_features",
entities=["user_id"],
ttl=timedelta(days=30),
features=[
feast.Feature("total_spend", feast.ValueType.FLOAT),
feast.Feature("purchase_frequency", feast.ValueType.INT32)
]
)
# 查询在线特征
online_features = project.get_online_features(
feature_refs=["transaction_features:total_spend"],
entity_rows=[{"user_id": 123}]
)
import pdb
class DebugPipeline:
def process_data(self, df):
try:
df = self._step1(df)
df = self._step2(df)
return self._step3(df)
except Exception as e:
print(f"错误发生在: {e}")
pdb.set_trace()
self._rollback()
# 使用IPython调试
from IPython import embed
def debug_processing():
df = load_problem_data()
embed() # 进入交互式调试环境
from data_lineage import LineageTracker
tracker = LineageTracker()
@tracker.trace("数据清洗")
def clean_data(raw_df):
# 清洗逻辑
return cleaned_df
@tracker.trace("特征工程")
def create_features(base_df):
# 特征生成逻辑
return feature_df
# 生成可视化报告
tracker.visualize(format='html', path='lineage_report.html')
通过以上完整方案,人工智能训练师可以实现:
实际实施建议:
参考技术栈选择:
完整企业级解决方案参考:Enterprise DataOps Platform
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)
# 定义Kafka数据源
t_env.execute_sql("""
CREATE TABLE user_behavior (
user_id STRING,
event_type STRING,
ts TIMESTAMP(3),
WATERMARK FOR ts AS ts - INTERVAL '5' SECOND
) WITH (
'connector' = 'kafka',
'topic' = 'user_events',
'properties.bootstrap.servers' = 'kafka:9092',
'format' = 'json'
)
""")
# 实时计算每分钟点击量
result = t_env.sql_query("""
SELECT
TUMBLE_START(ts, INTERVAL '1' MINUTE) as window_start,
COUNT(*) as click_count
FROM user_behavior
WHERE event_type = 'click'
GROUP BY TUMBLE(ts, INTERVAL '1' MINUTE)
""")
# 输出到Elasticsearch
t_env.execute_sql("""
CREATE TABLE es_sink (
window_start TIMESTAMP(3),
click_count BIGINT
) WITH (
'connector' = 'elasticsearch-7',
'hosts' = 'http://elasticsearch:9200',
'index' = 'real_time_clicks'
)
""")
result.execute_insert("es_sink")
from pyflink.common import WatermarkStrategy
from pyflink.datastream import ProcessFunction
class DataQualityMonitor(ProcessFunction):
def process_element(self, value, ctx):
# 检查数据完整性
if None in [value['user_id'], value['event_time']]:
ctx.output(self.error_tag, "Missing required fields")
# 检查时间合理性
if value['event_time'] > datetime.now():
ctx.output(self.anomaly_tag, "Future timestamp detected")
# 正常数据转发
yield value
# 创建侧输出流
error_tag = OutputTag("errors")
anomaly_tag = OutputTag("anomalies")
stream = env.from_source(
kafka_source,
WatermarkStrategy.for_monotonous_timestamps(),
"Kafka Source"
).process(DataQualityMonitor(error_tag, anomaly_tag))
# 处理异常流
stream.get_side_output(error_tag).add_sink(error_sink)
stream.get_side_output(anomaly_tag).add_sink(alert_sink)
import mlflow
# 记录推理数据schema
signature = mlflow.models.infer_signature(
model_input=X_train,
model_output=model.predict(X_train)
)
# 打包模型与数据schema
mlflow.pyfunc.save_model(
path="model",
python_model=model,
signature=signature,
input_example=X_train[:1],
conda_env="conda.yaml"
)
# 加载时验证数据格式
loaded_model = mlflow.pyfunc.load_model("model")
loaded_model.validate(pd.DataFrame(input_data))
from prometheus_client import Counter, Histogram
# 定义监控指标
REQUEST_COUNT = Counter(
'inference_requests_total',
'Total inference requests',
['model_version', 'status']
)
LATENCY = Histogram(
'inference_latency_seconds',
'Inference processing latency',
['model_version']
)
@app.route('/predict', methods=['POST'])
def predict():
start_time = time.time()
try:
data = request.get_json()
validate_input(data) # 数据格式校验
result = model.predict(data)
REQUEST_COUNT.labels(model_version, 'success').inc()
return jsonify(result)
except Exception as e:
REQUEST_COUNT.labels(model_version, 'error').inc()
return str(e), 400
finally:
LATENCY.labels(model_version).observe(time.time() - start_time)
from tenseal import CKKSContext, BFVContext
# 初始化加密上下文
context = CKKSContext(poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60])
# 加密敏感数据
def encrypt_data(df, columns):
for col in columns:
df[col] = df[col].apply(lambda x: context.encrypt(x))
return df
# 在加密数据上执行计算
def encrypted_operation(encrypted_a, encrypted_b):
return encrypted_a + encrypted_b
# 解密结果
def decrypt_result(encrypted_result):
return context.decrypt(encrypted_result)
from data_detector import SensitiveDataDetector
from data_masking import DynamicMasker
class DynamicDataProtection:
def __init__(self):
self.detector = SensitiveDataDetector()
self.masker = DynamicMasker()
def process_record(self, record):
detected = self.detector.detect(record)
return self.masker.mask(record, detected)
# 使用示例
dpp = DynamicDataProtection()
protected_data = [dpp.process_record(r) for r in streaming_data]
import torch
from transformers import CLIPModel
# 加载多模态对齐模型
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
# 生成统一特征空间表示
def align_modalities(texts, images):
text_inputs = tokenizer(texts, return_tensors="pt", padding=True)
image_inputs = processor(images=images, return_tensors="pt")
text_features = model.get_text_features(**text_inputs)
image_features = model.get_image_features(**image_inputs)
return torch.cat([text_features, image_features], dim=1)
# 计算跨模态相似度
similarity = torch.nn.CosineSimilarity(dim=1)
scores = similarity(text_features, image_features)
from sklearn.pipeline import FeatureUnion
from sklearn.preprocessing import FunctionTransformer
# 定义多模态处理流程
multimodal_pipeline = FeatureUnion([
('text_tfidf', TfidfVectorizer()),
('image_hist', FunctionTransformer(extract_image_features)),
('sensor_stats', FunctionTransformer(calculate_sensor_stats))
])
# 融合处理
fused_features = multimodal_pipeline.fit_transform(multimodal_data)
# 保存融合管道
joblib.dump(multimodal_pipeline, 'multimodal_fusion.pkl')
from datapane import Report, Blocks
def generate_daily_report(df):
# 创建交互式报告
report = Report(
Blocks(
"## 每日数据报告",
dp.DataTable(df.describe(), name="数据概览"),
dp.Plot(create_trend_chart(df)),
dp.Select(
dp.Box(dp.Text("各渠道表现:")),
dp.Group(
dp.BigNumber(heading="总销售额", value=df.sales.sum()),
dp.BigNumber(heading="平均客单价", value=df.sales.mean()),
columns=2
)
)
)
)
report.save("daily_report.html")
return report
from pycaret.anomaly import *
def detect_and_report_anomalies(df):
# 自动化异常检测
setup(df, silent=True)
model = create_model('knn')
predictions = predict_model(model, data=df)
# 生成诊断报告
anomalies = predictions[predictions.Anomaly == 1]
report = f"""
## 异常检测报告
**检测时间**: {datetime.now()}
**异常数量**: {len(anomalies)}
**主要异常特征**:
{anomalies.describe().to_markdown()}
**建议措施**:
- 检查数据采集系统
- 验证异常样本业务场景
- 更新数据质量规则
"""
return report
from data_lifecycle_manager import LifecyclePolicy
# 定义数据保留策略
policy = LifecyclePolicy(
retention_rules=[
{"match": {"environment": "prod"}, "retention": "3y"},
{"match": {"dataset_type": "temp"}, "retention": "7d"}
],
archive_rules=[
{"older_than": "1y", "tier": "glacier"}
]
)
# 自动化执行策略
def apply_lifecycle_policy():
for dataset in list_datasets():
if policy.should_archive(dataset):
archive_to_cold_storage(dataset)
if policy.should_delete(dataset):
safe_delete(dataset)
import codecarbon
# 跟踪数据处理碳排放
tracker = codecarbon.EmissionsTracker()
def process_large_dataset():
with tracker:
# 数据加载
df = load_data()
# 特征处理
processed = feature_pipeline(df)
# 模型训练
model = train_model(processed)
print(f"本次处理碳排放: {tracker.final_emissions} kg CO2")
# 生成碳足迹报告
tracker.save_to_file("emissions_report.csv")
通过以上扩展方案,人工智能训练师可以:
实施建议:
参考技术演进路线:
完整企业级数据治理平台参考:Enterprise Data Hub