利用人工智能技术构建一个完整的体育预测系统,涵盖数据收集、模型构建到部署应用的完整流程。
数据采集层
数据处理层
模型训练层
预测服务层
应用展示层
Python 3.8+
TensorFlow/PyTorch
Scikit-learn
Pandas/Numpy
Flask/FastAPI
python
复制
import requests import pandas as pd def fetch_sports_data(api_url, params): response = requests.get(api_url, params=params) if response.status_code == 200: return pd.DataFrame(response.json()) else: raise Exception(f"API request failed: {response.status_code}")
python
复制
def clean_data(df): # 处理缺失值 df = df.fillna(method='ffill') # 转换数据类型 df['date'] = pd.to_datetime(df['date']) # 去除异常值 df = df[(df['score'] >= 0) & (df['score'] <= 100)] return df
python
复制
from sklearn.feature_extraction import FeatureHasher def extract_features(df): # 时间特征 df['day_of_week'] = df['date'].dt.dayofweek df['month'] = df['date'].dt.month # 队伍特征 team_features = pd.get_dummies(df['team']) # 组合特征 features = pd.concat([df[['score', 'day_of_week', 'month']], team_features], axis=1) return features
python
复制
from sklearn.feature_selection import SelectKBest, f_classif def select_features(X, y, k=20): selector = SelectKBest(f_classif, k=k) X_new = selector.fit_transform(X, y) return X_new, selector
python
复制
from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier models = { 'gbdt': GradientBoostingClassifier(), 'xgb': XGBClassifier(), 'mlp': MLPClassifier(hidden_layer_sizes=(100, 50)) }
python
复制
from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def train_model(X, y): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42) best_model = None best_score = 0 for name, model in models.items(): model.fit(X_train, y_train) y_pred = model.predict(X_test) score = accuracy_score(y_test, y_pred) if score > best_score: best_score = score best_model = model return best_model, best_score
python
复制
from flask import Flask, request, jsonify import pickle app = Flask(__name__) # 加载模型 with open('sports_model.pkl', 'rb') as f: model = pickle.load(f) @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() features = preprocess_input(data) prediction = model.predict([features]) return jsonify({'prediction': int(prediction[0])}) def preprocess_input(data): # 数据预处理逻辑 return processed_features if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
python
复制
def real_time_prediction(new_data): # 获取实时数据 live_data = fetch_live_data() # 特征处理 features = extract_live_features(live_data) # 预测 prediction = model.predict([features]) return prediction
使用Dask进行分布式计算
实现模型缓存
优化特征计算
实现在线学习
定期重新训练
模型版本控制
实现预测准确率监控
数据质量监控
系统性能监控