数据结构与算法

转自:http://hi.baidu.com/technical/blog/item/406416a4c8a77bfd9052eed9.html


 

数据结构与算法,这个部分的内容其实是十分的庞大,要想都覆盖到不太容易。在校学 习阶段我们可能需要对每种结构,每种算法都学习,但是找工作笔试或者面试的时候,要在很短的时间内考察一个人这方面的能力,把每种结构和算法都问一遍不太 现实。所以,实际的情况是,企业一般考察一些看起来很基本的概念和算法,或者是一些变形,然后让你去实现。也许看起来简单,但是如果真让你在纸上或者是计 算机上快速地完成一个算法,并且设计测试案例,最后跑起来,你就会发现会很难了。这就要求我们要熟悉,并牢固掌握常用的算法,特别是那些看起来貌似简单的 算法,正是这些用起来很普遍的算法,才要求我们能很扎实的掌握,在实际工作中提高工作效率。遇到复杂的算法,通过分析和扎实的基本功,应该可以很快地进行 开发。

闲话少说,下面进入正题。

一.数据结构部分

1.数组和链表的区别。(很简单,但是很常考,记得要回答全面)

C++语言中可以用数组处理一组数据类型相同的数据,但不允许动态定义数组的大 小,即在使用数组之前必须确定数组的大小。而在实际应用中,用户使用数组之前有时无法准确确定数组的大小,只能将数组定义成足够大小,这样数组中有些空间 可能不被使用,从而造成内存空间的浪费。链表是一种常见的数据组织形式,它采用动态分配内存的形式实现。需要时可以用new分配内存空间,不需要时用 delete将已分配的空间释放,不会造成内存空间的浪费。
  
从 逻辑结构来看:数组必须事先定义固定的长度(元素个数),不能适应数据动态地增减的情况,即数组的大小一旦定义就不能改变。当数据增加时,可能超出原先定 义的元素个数;当数据减少时,造成内存浪费;链表动态地进行存储分配,可以适应数据动态地增减的情况,且可以方便地插入、删除数据项。(数组中插入、删除 数据项时,需要移动其它数据项)。  
  
从内存存储来看:(静态)数组从栈中分配空间(用NEW创建的在堆中), 对于程序员方便快速,但是自由度小;链表从堆中分配空间, 自由度大但是申请管理比较麻烦.

从访问方式来看:数组在内存中是连续存储的,因此,可以利用下标索引进行随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的方式由前到后顺序访问,所以访问效率比数组要低。

2.链表的一些操作,如链表的反转,链表存在环路的判断(快慢指针),双向链表,循环链表相关操作。

3.队列(特殊的如优先级队列),栈的应用。(比如队列用在消息队列,栈用在递归调用中)

4.二叉树的基本操作

二叉树的三种遍历方式(前序,中序,后序)及其递归和非递归实现,三种遍历方式的主要应用(如后缀表达式等)。相关操作的时间复杂度。

5.字符串相关

整数,浮点数和字符串之间的转换(atoi,atof,itoa)

字符串拷贝注意异常检查,比如空指针,字符串重叠,自赋值,字符串结束符'\0'等。

二.算法部分

1.排序算法:

排序可以算是最基本的,最常用的算法,也是笔试面试中最常被考察到的算法。最基本 的冒泡排序,选择排序,插入排序要可以很快的用代码实现,这些主要考察你的实际编码能力。堆排序,归并排序,快排序,这些算法需要熟悉主要的思想,和需要 注意的细节地方。需要熟悉常用排序算法的时间和空间复杂度。

各种排序算法的使用范围总结:(1)当数据规模较小的时候,可以用简单的排序算法 如直接插入排序或直接选择排序。(2)当文件的初态已经基本有序时,可以用直接插入排序或冒泡排序。(3)当数据规模比较大时,应用速度快的排序算法。可 以考虑用快速排序。当记录随机分布的时候,快排的平均时间最短,但可能出现最坏的情况,这时候的时间复杂度是O(n^2),且递归深度为n,所需的栈空间 问O(n)。(4)堆排序不会出现快排那样的最坏情况,且堆排序所需的辅助空间比快排要少。但这两种算法都不是稳定的,若要求排序时稳定的,可以考虑用归 并排序。(5)归并排序可以用于内排序,也可以用于外排序。在外排序时,通常采用多路归并,并且通过解决长顺串的合并,产生长的初始串,提高主机与外设并 行能力等措施,以减少访问外存额次数,提高外排序的效率。

2,查找算法

能够熟练写出或者是上机编码出二分查找的程序。

3.hash算法

4.一些算法设计思想。

贪心算法,分治算法,动态规划算法,随机化算法,回溯算法等。这些可以根据具体的例子程序来复习。

5.STL

STL(Standard Template Library)是一个C++领域中,用模版技术实现的数据结构和算法库,已经包含在了C++标准库中。其中的 vecor,list,stack,queue等结构不仅拥有更强大的功能,还有了更高的安全性。除了数据结构外,STL还包含泛化了的迭代器,和运行在 迭代器上的各种实用算法。这些对于对性能要求不是太高,但又不希望自己从底层实现算法的应用还是很具有诱惑力的。

你可能感兴趣的:(数据结构与算法)