【科研必备】EI/Scopus收录!2025年3-4月智能制造、无人驾驶、人工智能等前沿领域国际会议邀您参与~与全球学者交流,让学术之光在国际舞台上闪耀!
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注V “
学术会议小灵通
”或参考学术信息专栏:https://ais.cn/u/EbMjMn
import numpy as np
# Kalman filter implementation
def kalman_filter(A, B, H, Q, R, x0, P0, u, z):
x = x0
P = P0
for i in range(len(u)):
# Prediction
x = A @ x + B @ u[i]
P = A @ P @ A.T + Q
# Update
K = P @ H.T @ np.linalg.inv(H @ P @ H.T + R)
x = x + K @ (z[i] - H @ x)
P = (np.eye(len(P)) - K @ H) @ P
return x
from sklearn import svm
from sklearn.datasets import load_iris
# Load data
data = load_iris()
X, y = data.data, data.target
# SVM classifier
clf = svm.SVC(kernel='linear')
clf.fit(X, y)
print(clf.predict(X))
import numpy as np
import matplotlib.pyplot as plt
# Example of Fourier Transform in Python
t = np.linspace(0, 1, 400)
f = np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t)
F = np.fft.fft(f)
plt.plot(np.fft.fftfreq(len(f)), np.abs(F))
plt.title('Fourier Transform')
plt.show()
class PID:
def __init__(self, Kp, Ki, Kd):
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.prev_error = 0
self.integral = 0
def compute(self, setpoint, measured_value):
error = setpoint - measured_value
self.integral += error
derivative = error - self.prev_error
self.prev_error = error
return self.Kp * error + self.Ki * self.integral + self.Kd * derivative
pid = PID(1.0, 0.1, 0.01)
control_signal = pid.compute(20, 18)
print(control_signal)
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
# Sample text data
data = ['I love this!', 'This is terrible.', 'I feel amazing.', 'I hate this.']
labels = [1, 0, 1, 0] # 1 for positive, 0 for negative
# Convert text to features
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(data)
y = labels
# Train Naive Bayes model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
model = MultinomialNB()
model.fit(X_train, y_train)
print(model.predict(X_test))