HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

Problem Description
City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.
 
Input
There are multiple test cases.
For each test case:
The first line contains two integers N and M, representing the number of the crossings and roads.
The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers X i and Y i, representing that road i connects crossing X i and Y i (X i≠Y i).
The following line contains a single integer Q, representing the number of RTQs.
Then Q lines follows, each describing a RTQ by two integers S and T(S≠T) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.
The input ends with a line of “0 0”.
Please note that: 0<N<=10000, 0<M<=100000, 0<Q<=10000, 0<X i,Y i<=N, 0<S,T<=M 
 
Output
For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.
 
题目大意:给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X条边到第Y条边必需要经过的点有多少个。
思路:对于两条边X,Y,若他们在同一个双连通分量中,那他们之间至少有两条路径可以互相到达。
那么,对于两条不在同一个分量中的边X,Y,显然从X到Y必须要经过的的点的数目等于从X所在的边双连通分量到Y所在的双连通分量中的割点的数目。
于是,可以找出所有双连通分量,缩成一个点。对于 双连通分量A - 割点 - 双连通分量B,重构图成3个点 A - 割点 - B。
那么,所有的双连通分量缩完之后,新图G‘成了一棵树(若存在环,那么环里的点都在同一个双连通分量中,矛盾)
那么题目变成了:从X所在的G'中的点,到Y所在的G’中的点的路径中,有多少点是由割点变成的。
由于图G‘中的点都是 双连通分量 - 割点 - 双连通分量 - 割点 - 双连通分量……的形式(两个双连通分量不会连在一起)
那么X到Y的割点的数目就等于两点距离除以2,暨(dep[x] + dep[Y] - dep[LCA(X, Y)]) / 2,其中dep是深度,lca是最近公共祖先。
其中LCA用tarjan也好,用RMQ也好,随意。我用的是离线的tarjan。
 
细节:因为找边双连通分量的思路错了跪了一整天……写一下正确又优美的姿势是怎么样的>_<
类似于tarjan求强联通的算法,用一个vis[]数组记录某条边是否被访问过。
每次第一次访问一条边,把这条边压入栈中,在遍历完某条边指向的点之后,若pre[u] <= lowlink[v](见code),把栈中的边都设为同一个边双连通分量。
仔细想想觉得应该是对的。我不会证明>_<
 
PS:新图G’中点的数目可能会高达2*n的等级,试想一下原图恰好是一条链的情况,由于存在重边,边数也最好要2*m。
 
代码(178MS):
  1 #include <cstdio>

  2 #include <iostream>

  3 #include <algorithm>

  4 #include <cstring>

  5 #include <vector>

  6 using namespace std;

  7 typedef long long LL;

  8 

  9 typedef pair<int, int> PII;

 10 

 11 const int MAXV = 10010;

 12 const int MAXE = 200010;

 13 

 14 int ans[MAXV];

 15 vector<PII> query[MAXV << 1];

 16 

 17 struct SccGraph {

 18     int head[MAXV << 1], fa[MAXV << 1], ecnt;

 19     bool vis[MAXV << 1];

 20     int to[MAXE << 1], next[MAXE << 1];

 21     int dep[MAXV << 1];

 22 

 23     void init(int n) {

 24         memset(head, -1, sizeof(int) * (n + 1));

 25         memset(vis, 0, sizeof(bool) * (n + 1));

 26         for(int i = 1; i <= n; ++i) fa[i] = i;

 27         ecnt = 0;

 28     }

 29 

 30     int find_set(int x) {

 31         return fa[x] == x ? x : fa[x] = find_set(fa[x]);

 32     }

 33 

 34     void add_edge(int u, int v) {

 35         to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;

 36         to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;

 37     }

 38 

 39     void lca(int u, int f, int deep) {

 40         dep[u] = deep;

 41         for(int p = head[u]; ~p; p = next[p]) {

 42             int &v = to[p];

 43             if(v == f || vis[v]) continue;

 44             lca(v, u, deep + 1);

 45             fa[v] = u;

 46         }

 47         vis[u] = true;

 48         for(vector<PII>::iterator it = query[u].begin(); it != query[u].end(); ++it) {

 49             if(vis[it->first]) {

 50                 ans[it->second] = (dep[u] + dep[it->first] - 2 * dep[find_set(it->first)]) / 2;

 51             }

 52         }

 53     }

 54 } G;

 55 

 56 int head[MAXV], lowlink[MAXV], pre[MAXV], ecnt, dfs_clock;

 57 int sccno[MAXV], scc_cnt;

 58 int to[MAXE], next[MAXE], scc_edge[MAXE];

 59 bool vis[MAXE], iscut[MAXV];

 60 int stk[MAXE], top;

 61 int n, m, q;

 62 

 63 void init() {

 64     memset(head, -1, sizeof(int) * (n + 1));

 65     memset(pre, 0, sizeof(int) * (n + 1));

 66     memset(iscut, 0, sizeof(bool) * (n + 1));

 67     memset(vis, 0, sizeof(bool) * (2 * m));

 68     ecnt = scc_cnt = dfs_clock = 0;

 69 }

 70 

 71 void add_edge(int u, int v) {

 72     to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;

 73     to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;

 74 }

 75 

 76 void tarjan(int u, int f) {

 77     pre[u] = lowlink[u] = ++dfs_clock;

 78     int child = 0;

 79     for(int p = head[u]; ~p; p = next[p]) {

 80         if(vis[p]) continue;

 81         vis[p] = vis[p ^ 1] = true;

 82         stk[++top] = p;

 83         int &v = to[p];

 84         if(!pre[v]) {

 85             ++child;

 86             tarjan(v, u);

 87             lowlink[u] = min(lowlink[u], lowlink[v]);\

 88             if(pre[u] <= lowlink[v]) {

 89                 iscut[u] = true;

 90                 ++scc_cnt;

 91                 while(true) {

 92                     int t = stk[top--];

 93                     scc_edge[t] = scc_edge[t ^ 1] = scc_cnt;

 94                     if(t == p) break;

 95                 }

 96             }

 97         } else lowlink[u] = min(lowlink[u], pre[v]);

 98     }

 99     if(f < 1 && child == 1) iscut[u] = false;

100 }

101 

102 void build() {

103     G.init(scc_cnt);

104     for(int p = 0; p != ecnt; ++p) {

105         int &v = to[p];

106         if(iscut[v]) G.add_edge(sccno[v], scc_edge[p]);

107     }

108 }

109 

110 void solve() {

111     for(int i = 1; i <= n; ++i)

112         if(!pre[i]) tarjan(i, 0);

113     for(int u = 1; u <= n; ++u)

114         if(iscut[u]) sccno[u] = ++scc_cnt;

115 }

116 

117 int main() {

118     while(scanf("%d%d", &n, &m) != EOF) {

119         if(n == 0 && m == 0) break;

120         init();

121         for(int i = 1; i <= m; ++i) {

122             int u, v;

123             scanf("%d%d", &u, &v);

124             add_edge(u, v);

125         }

126         solve();

127         build();

128         for(int i = 0; i <= scc_cnt; ++i) query[i].clear();

129         scanf("%d", &q);

130         for(int i = 0; i < q; ++i) {

131             int x, y;

132             scanf("%d%d", &x, &y);

133             x = scc_edge[x * 2 - 2]; y = scc_edge[y * 2 - 2];

134             query[x].push_back(make_pair(y, i));

135             query[y].push_back(make_pair(x, i));

136         }

137         for(int i = 1; i <= scc_cnt; ++i) if(!G.vis[i]) G.lca(i, 0, 0);

138         for(int i = 0; i < q; ++i) printf("%d\n", ans[i]);

139     }

140 }
View Code

 

你可能感兴趣的:(System)