相关题目:Leetcode150
文档讲解:Leetcode150
视频讲解:Leetcode150
给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为 ‘+’、‘-’、‘*’ 和 ‘/’ 。
- 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
- 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
from operator import add, sub, mul
def div(x, y):
# 使用整数除法的向零取整方式
return int(x / y) if x * y > 0 else -(abs(x) // abs(y))
class Solution(object):
op_map = {'+': add, '-': sub, '*': mul, '/': div}
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
if token not in {'+', '-', '*', '/'}:
stack.append(int(token))
else:
op2 = stack.pop()
op1 = stack.pop()
stack.append(self.op_map[token](op1, op2)) # 第一个出来的在运算符后面
return stack.pop()
class Solution(object):
def evalRPN(self, tokens: List[str]) -> int:
stack = []
for token in tokens:
# 判断是否为数字,因为isdigit()不识别负数,故需要排除第一位的符号
if token.isdigit() or (len(token)>1 and token[1].isdigit()):
stack.append(token)
else:
op2 = stack.pop()
op1 = stack.pop()
# 由题意"The division always truncates toward zero",所以使用int()可以天然取整
stack.append(str(int(eval(op1 + token + op2))))
return int(stack.pop())
相关题目:Leetcode239
文档讲解:Leetcode239
视频讲解:Leetcode239
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。返回滑动窗口中的最大值。
- 进阶:你能在线性时间复杂度内解决此题吗?
from collections import deque
class MyQueue: #单调队列(从大到小
def __init__(self):
self.queue = deque() #这里需要使用deque实现单调队列,直接使用list会超时
#每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
#同时pop之前判断队列当前是否为空。
def pop(self, value):
if self.queue and value == self.queue[0]:
self.queue.popleft()#list.pop()时间复杂度为O(n),这里需要使用collections.deque()
#如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
#这样就保持了队列里的数值是单调从大到小的了。
def push(self, value):
while self.queue and value > self.queue[-1]:
self.queue.pop()
self.queue.append(value)
#查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
def front(self):
return self.queue[0]
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
que = MyQueue()
result = []
for i in range(k): #先将前k的元素放进队列
que.push(nums[i])
result.append(que.front()) #result 记录前k的元素的最大值
for i in range(k, len(nums)):
que.pop(nums[i - k]) #滑动窗口移除最前面元素
que.push(nums[i]) #滑动窗口前加入最后面的元素
result.append(que.front()) #记录对应的最大值
return result
from collections import deque
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
max_list = [] # 结果集合
kept_nums = deque() # 单调队列
for i in range(len(nums)):
update_kept_nums(kept_nums, nums[i]) # 右侧新元素加入
if i >= k and nums[i - k] == kept_nums[0]: # 左侧旧元素如果等于单调队列头元素,需要移除头元素
kept_nums.popleft()
if i >= k - 1:
max_list.append(kept_nums[0])
return max_list
def update_kept_nums(kept_nums, num): # num 是新加入的元素
# 所有小于新元素的队列尾部元素,在新元素出现后,都是没有价值的,都需要被移除
while kept_nums and num > kept_nums[-1]:
kept_nums.pop()
kept_nums.append(num)
相关题目:Leetcode347
文档讲解:Leetcode347
视频讲解:Leetcode347
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
提示:
- 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
- 你的算法的时间复杂度必须优于 O ( n log n ) O(n \log n) O(nlogn) , n 是数组的大小。
- 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
思路:
注意:
使用小顶堆
#时间复杂度:O(nlogk)
#空间复杂度:O(n)
import heapq
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
#要统计元素出现频率
map_ = {} #nums[i]:对应出现的次数
for i in range(len(nums)):
map_[nums[i]] = map_.get(nums[i], 0) + 1
#对频率排序
#定义一个小顶堆,大小为k
pri_que = [] #小顶堆
#用固定大小为k的小顶堆,扫描所有频率的数值
for key, freq in map_.items():
heapq.heappush(pri_que, (freq, key))
if len(pri_que) > k: #如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
heapq.heappop(pri_que)
#找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
result = [0] * k
for i in range(k-1, -1, -1):
result[i] = heapq.heappop(pri_que)[1]
return result
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
# 使用字典统计数字出现次数
time_dict = defaultdict(int)
for num in nums:
time_dict[num] += 1
# 更改字典,key为出现次数,value为相应的数字的集合
index_dict = defaultdict(list)
for key in time_dict:
index_dict[time_dict[key]].append(key)
# 排序
key = list(index_dict.keys())
key.sort()
result = []
cnt = 0
# 获取前k项
while key and cnt != k:
result += index_dict[key[-1]]
cnt += len(index_dict[key[-1]])
key.pop()
return result[0: k]