pytorch optim.SGD

1.应用

import torch
import torch.nn as nn

optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
optimizer.zero_grad()
loss_fn(model(input), target).backward()
optimizer.step()

概念

最简单的更新规则是Stochastic Gradient Descent (SGD):

weight = weight - learning_rate * gradient

手动实现

learning_rate = 0.01
for f in net.parameters(): # 遍历图中每个节点的参数
    f.data.sub_(f.grad.data * learning_rate) # 将节点的参数-(学习速率*梯度),单下划线表示替换

pytorch中已经实现了SGD等一系列的更新方法

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

API

1.类

stochastic gradient descent (optionally with momentum).

CLASS torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)
参数 描述
params (iterable) iterable of parameters to optimize or dicts defining parameter groups
lr (float) 学习速率
momentum (float, optional) momentum factor (default: 0)
weight_decay (float, optional) weight decay (L2 penalty) (default: 0)
dampening (float, optional) dampening for momentum (default: 0)
nesterov (bool, optional) enables Nesterov momentum (default: False)

对象

参数 描述
step(closure=None) Performs a single optimization step.

参考:
https://pytorch.org/docs/stable/optim.html?highlight=sgd#torch.optim.SGD

你可能感兴趣的:(Python,python)