不稳定性心绞痛(UA)是急性冠脉综合征的重要类型,其治疗需高度个性化的围术期管理。传统临床决策依赖经验性评分(如GRACE、TIMI),但无法动态整合多模态数据。大模型(如Transformer)在时序数据处理和非线性关系建模中的优势,为精准预测和实时决策提供了新可能。
class DataPreprocessor:
def align_temporal_data(self, ecg, ct_scans):
"""时间轴对齐算法"""
# ECG采样率100Hz,CT每0.5s一帧
ecg_interpolated = np.interp(
ct_scans.timestamps,
ecg.timestamps,
ecg.signal
)
return ecg_interpolated
def extract_radiomics(self, ct_volume):
"""影像组学特征提取"""
features = {
'plaque_volume': skimage.measure.mesh_surface_area(ct_volume),
'calcification_score': calcify_detector(ct_volume),
}
return features
class MultiModalModel(nn.Module):
def forward(self, ct, ecg, bp):
# 影像特征提取
ct_feat = self.cnn(ct) # [batch, 512]
# ECG时序编码
ecg_embed = self.transformer(ecg) # [batch, 256]
# 术中血压动态编码
bp_embed, _ = self.lstm(bp) # [batch, 128]
# 跨模态融合
fused = self.cross_attn(
query=ct_feat,
key=torch.cat([ecg_embed, bp_embed], dim=1),
value=torch.cat([ecg_embed, bp_embed], dim=1)
)
# 多任务输出
risk = self.risk_head(fused)
plan = self.surgery_plan_head(fused)
return risk, plan
class EdgeProcessor:
def process_stream(self, data):
window_size = 300 # 30秒窗口
while True:
buffer = data.read(window_size)
if len(buffer) == window_size:
features = self.extract_features(buffer)
compressed = zlib.compress(features.tobytes())
cloud_response = requests.post(CLOUD_URL, data=compressed)
risk_level = cloud_response.json()['risk']
self.display_ar_overlay(risk_level)
指标 | 计算方法 | 目标值 |
---|---|---|
AUC-ROC | sklearn.metrics.roc_auc_score | >0.85 |
校准斜率 | Brier分数校准曲线斜率 | 0.9-1.1 |
临床NRI | 净重分类改善指数 | >0.3 |
import shap
explainer = shap.DeepExplainer(model, background_data)
shap_values = explainer.shap_values(test_sample)
shap.plots.waterfall(shap_values[0], max_display=10)