使用libSVM

http://ntu.csie.org/~piaip/svm/svm_tutorial.html piaip's Using (lib)SVM Tutorial

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html  LIBSVM -- A Library for Support Vector Machines

首先要准备2个文件:my_train  my_test   训练文件和测试文件

1. train

./svm-train my_train  // 文件1(训练文件)

  生成文件   my_train.model

2. predict

./svm-predict my_test my_train.model my_test.out // 文件1(要预测的文件) 文件2(trainning model) 文件3(输出文件)

 3. scale

把my_train文件的所有变量scale成[-1,1],输出到 my_train.scale,range1保存了所有变量的原始范围和scale后的范围,用于为my_test文件scale,保证范围scale幅度相同。

scale训练文件

svm-scale -l -1 -u 1 -s range1 my_train > my_train.scale

scale要预测的文件

svm-scale -r range1 my_test > my_test.scale

然后train和predict同上。

svm-scale的参数:

-l lower : x scaling lower limit (default -1)
-u upper : x scaling upper limit (default +1)
-y y_lower y_upper : y scaling limits (default: no y scaling)
-s save_filename : save scaling parameters to save_filename
-r restore_filename : restore scaling parameters from restore_filename

 

你可能感兴趣的:(lib)