【国际会议论坛汇总】2025年5月全球技术峰会,解码通信、视觉与数据的未来密码!融合通信系统、计算机视觉、智能计算、物联网与数据网络的跨领域创新)
# 参考网页4的OFA(Once-for-All)多平台部署方案
import torch
from ofa.imagenet_classification.elastic_nn.networks import OFAMobileNetV3
# 定义母网络(支持多种子网结构)
ofa_network = OFAMobileNetV3(
n_classes=1000,
dropout_rate=0.2,
width_mult_list=[0.65, 0.8, 1.0], # 支持不同宽度的子网
ks_list=[3,5,7], # 不同卷积核尺寸
expand_ratio_list=[3,4,6]
)
# 训练母网络(仅需一次)
def train_ofa():
for epoch in range(100):
for data in train_loader:
images, labels = data
# 动态采样子网配置
subnet_config = ofa_network.sample_active_subnet()
outputs = ofa_network(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 部署到物联网设备(选择轻量子网)
def deploy_to_iot_device():
subnet_config = {'width_mult': 0.65, 'ks': 3, 'expand_ratio': 3}
ofa_network.set_active_subnet(**subnet_config)
torch.save(ofa_network.state_dict(), 'ofa_iot.pth')
# 参考网页7的MODEST透明物体分割与深度预测
import torch
from models import ISGNet
class TransparentObjectModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.encoder = ISGNet(pretrained='ISGNet_clearpose.pth')
self.decoder = torch.nn.Sequential(
torch.nn.Conv2d(256, 128, 3, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(128, 2, 1) # 输出分割掩膜和深度图
)
def forward(self, x):
features = self.encoder(x)
return self.decoder(features)
# 使用示例
model = TransparentObjectModel()
rgb_input = load_image("scene1/000000-color.png")
seg_map, depth_map = model(rgb_input)
% 参考网页10的神经气体网络(NGN)
function net = NeuralGasNetwork(X, params, plot_flag)
% 初始化神经元
net.w = rand(params.N, size(X,2));
for t=1:params.tmax
% 随机采样数据点
xi = X(randi(size(X,1)),:);
% 计算距离并排序
distances = sum((net.w - xi).^2, 2);
[~, order] = sort(distances);
% 更新权重(学习率随迭代衰减)
epsilon = params.epsilon_initial*(params.epsilon_final/params.epsilon_initial)^(t/params.tmax);
for k=1:params.N
h = exp(-(k-1)/(params.lambda_initial*(params.lambda_final/params.lambda_initial)^(t/params.tmax)));
net.w(order(k),:) = net.w(order(k),:) + epsilon*h*(xi - net.w(order(k),:));
end
end
end
# 参考网页3的传感器融合与嵌入式优化
import numpy as np
class AdaptiveKalmanFilter:
def __init__(self, dim_x=3):
self.x = np.zeros(dim_x) # 状态向量
self.P = np.eye(dim_x) # 协方差矩阵
self.Q = 0.01*np.eye(dim_x) # 过程噪声
self.R = 0.1*np.eye(dim_x) # 观测噪声
def update(self, z):
# 预测步骤
self.x = F @ self.x
self.P = F @ self.P @ F.T + self.Q
# 更新步骤
K = self.P @ H.T @ np.linalg.inv(H @ self.P @ H.T + self.R)
self.x += K @ (z - H @ self.x)
self.P = (np.eye(len(self.x)) - K @ H) @ self.P
return self.x
# 应用示例(融合IMU与GPS数据)
kf = AdaptiveKalmanFilter()
imu_data = get_imu_acceleration()
gps_data = get_gps_position()
fused_state = kf.update(np.concatenate([imu_data, gps_data]))
import dgl
import torch
class GNNModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = dgl.nn.GraphConv(64, 128)
self.conv2 = dgl.nn.GraphConv(128, 2) # 输出异常/正常分类
def forward(self, g, features):
x = torch.relu(self.conv1(g, features))
return self.conv2(g, x)
# 输入:网络拓扑图(节点=设备,边=流量)
# 输出:节点异常概率