HDU 4716 A Computer Graphics Problem
水题。略
HDU 4717 The Moving Points
题目:给出n个点的起始位置以及速度矢量,问任意一个时刻使得最远的两点的距离最小。
分析:显然只有两点的话,答案满足三分性质。对于多个点,画个图分析一下,其实也满足三分性质。因此,先构造n*(n-1)/2个二次函数,于是三分枚举时间即可。
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <map> #include <stack> #include <queue> using namespace std; #define pb push_back #define mp make_pair #define eps 1e-6 typedef long long ll; struct point { ll x, y, vx, vy; } p[350]; struct func { ll a, b, c; } f[50000]; int m, n; double anst, ansd; inline void makef(point a, point b) { f[m].a = (a.vx-b.vx)*(a.vx-b.vx)+(a.vy-b.vy)*(a.vy-b.vy); f[m].b = 2*((a.x-b.x)*(a.vx-b.vx)+(a.y-b.y)*(a.vy-b.vy)); f[m++].c = (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } inline double foo(int x, double t) { return f[x].a*t*t+f[x].b*t+f[x].c; } inline double getd(double t) { double ret = -1; for (int i = 0; i < m; ++i) { double tmp = foo(i,t); if (tmp > ret) ret = tmp; } return ret; } int main() { #ifndef ONLINE_JUDGE freopen("sum.in", "r", stdin); // freopen("cf.out", "w", stdout); #endif int T; scanf("%d", &T); for (int ncase = 1; ncase <= T; ++ncase) { scanf("%d", &n); for (int i = 0; i < n; ++i) scanf("%I64d%I64d%I64d%I64d",&p[i].x, &p[i].y, &p[i].vx, &p[i].vy); m = 0; for (int i = 0; i < n-1; ++i) for (int j = i+1; j < n; ++j) makef(p[i], p[j]); double low = .0, high = 1e120; while(high-low>eps) { double mid1 = (2*low+high)/3.0; double mid2 = (low+2*high)/3.0; double tmp1 = getd(mid1); double tmp2 = getd(mid2); if (tmp1-tmp2>eps) { anst = mid2; ansd = tmp2; low = mid1; } else { anst = mid1; ansd = tmp1; high = mid2; } } printf("Case #%d: %.2lf %.2lf\n", ncase, anst, sqrt(ansd)); } return 0; }
HDU 4718 The LCIS on the Tree
我用的是树链剖分+线段树来写,发现在求lca合并时很难维护,改天用lct水掉算了 >.<
这题的简单版 hdu 3308 LCIS 线段树
待补。
HDU 4719 Oh My Holy FFF
题目大意:给出n个数b1...bn,现在需要划分集合,每个集合的元素不能超过L个,并且要求第i个集合的最后一个元素now大于第i-1个集合的最后一个元素pre。每个集合的价值为:now*now-pre。题目目标是:求max{ sigma(所有集合价值) }
分析:不难想出一个递推式:dp[i]表示当前i作为集合的最后一个元素的最优解。
dp[i] = max{ dp[j] + b[i]*b[i]-b[j] }。 0<=i-j<= L,b[j]<b[i]。
注意到b[i]是不变的,于是转移方程可以写成:
dp[i] = max{ b[i]*b[i] + (dp[j] -b[j]) }。 0<=i-j<= L,b[j]<b[i]。
如何在约束( 0<=i-j<= L,b[j]<b[i] ) 下,求出dp[j]-b[j]最大?
这里可以用到单调队列,线段树维护一下即可。
具体实现(代码)献上我队友的代码吧 = =。
struct seg { int l,r; ll mx; int mid() { return l+r>>1; }; } tree[maxn<<2]; void init_tree(int l,int r,int x) { tree[x].l=l,tree[x].r=r; tree[x].mx=-1; if(l==r)return; int mid=l+r>>1; init_tree(l,mid,lc(x)); init_tree(mid+1,r,rc(x)); } void insert(int pos,int x,ll num) { if(tree[x].l==tree[x].r) { tree[x].mx=num; return; } int mid=tree[x].mid(); if(pos<=mid)insert(pos,lc(x),num); else insert(pos,rc(x),num); tree[x].mx=max(tree[lc(x)].mx,tree[rc(x)].mx); } ll query(int l,int r,int x) { if(l<=tree[x].l && tree[x].r<=r) return tree[x].mx; int mid=tree[x].mid(); ll res=-1; if(l<=mid)res=max(res,query(l,r,lc(x))); if(r>mid)res=max(res,query(l,r,rc(x))); return res; } deque<pair<ll,int> >q[maxn]; int t,n,m,cas; ll a[maxn]; int main() { cin>>t; while(t--) { scanf("%d%d",&n,&m); init_tree(0,100000,1); for(int i=0; i<=100000; i++) while(!q[i].empty())q[i].pop_front(); ll ans=-1; for(int i=1; i<=n; i++) scanf("%I64d",&a[i]); for(int i=1; i<=n; i++) { ll res=query(0,a[i]-1,1); if (i <= m && res==-1)res=0; if(res!=-1) { res+=a[i]*a[i]; if(i==n)ans=res; while(!q[a[i]].empty() && q[a[i]].back().first<=res-a[i]) q[a[i]].pop_back(); q[a[i]].push_back(mp(res-a[i],i)); if(q[a[i]].front().second==i) insert(a[i],1,q[a[i]].front().first); } if(i>m) { insert(a[i-m],1,-1); if(q[a[i-m]].size() && q[a[i-m]].front().second==i-m) q[a[i-m]].pop_front(); if(!q[a[i-m]].empty()) insert(a[i-m],1,q[a[i-m]].front().first); } } if(ans!=-1)printf("Case #%d: %I64d\n",++cas,ans); else printf("Case #%d: No solution\n",++cas); } }
HDU 4720 Naive and Silly Muggles
注意到不一定是外接圆,如果是钝角三角形时,最长边即为直径。
#include <set> #include <map> #include <list> #include <cmath> #include <queue> #include <stack> #include <string> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; #define debug puts("here") #define rep(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<=b;i++) #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++) #define pb push_back #define RD(n) scanf("%d",&n) #define RD2(x,y) scanf("%d%d",&x,&y) #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w) #define All(vec) vec.begin(),vec.end() #define MP make_pair #define PII pair<int,int> #define PQ priority_queue #define cmax(x,y) x = max(x,y) #define cmin(x,y) x = min(x,y) #define Clear(x) memset(x,0,sizeof(x)) /* #pragma comment(linker, "/STACK:1024000000,1024000000") int size = 256 << 20; // 256MB char *p = (char*)malloc(size) + size; __asm__("movl %0, %%esp\n" :: "r"(p) ); */ char IN; bool NEG; inline void Int(int &x) { NEG = 0; while(!isdigit(IN=getchar())) if(IN=='-')NEG = 1; x = IN-'0'; while(isdigit(IN=getchar())) x = x*10+IN-'0'; if(NEG)x = -x; } inline void LL(ll &x) { NEG = 0; while(!isdigit(IN=getchar())) if(IN=='-')NEG = 1; x = IN-'0'; while(isdigit(IN=getchar())) x = x*10+IN-'0'; if(NEG)x = -x; } /******** program ********************/ const double eps=1e-8; const double PI = acos(-1.0); double dis(double a,double b){ return a*a+b*b; } int dcmp(double x){ if(fabs(x)<eps)return 0; return x>0?1:-1; } double ox,oy,r; bool cc(double x1,double y1,double x2,double y2,double x3,double y3){ ox = (x1+x2)/2,oy = (y1+y2)/2; r = dis(ox-x2,oy-y2); if( dcmp(dis(ox-x3,oy-y3)-r)<=0 ) return true; return false; } void solve(){ double x,y; cin>>x>>y; if(dcmp(dis(x-ox,y-oy)-r)>0)puts("Safe"); else puts("Danger"); } int main() { #ifndef ONLINE_JUDGE freopen("sum.in","r",stdin); //freopen("sum.out","w",stdout); #endif int Ncase = 0; int ncase; RD(ncase); double x1,x2,x3,y1,y2,y3; while(ncase--) { cin>>x1>>y1>>x2>>y2>>x3>>y3; printf("Case #%d: ",++Ncase); if(cc(x1,y1,x2,y2,x3,y3)) solve(); else if(cc(x2,y2,x3,y3,x1,y1)) solve(); else if(cc(x3,y3,x1,y1,x2,y2)) solve(); else{ double k1=x2-x1,t1=y2-y1,k2=x3-x2,t2=y3-y2; double c1=(y2*y2+x2*x2-x1*x1-y1*y1)/2.0,c2=(y3*y3+x3*x3-x2*x2-y2*y2)/2.0; double a=(c1*t2-c2*t1)/(t2*k1-t1*k2),b=(c1*k2-c2*k1)/(t1*k2-k1*t2); double r=(a-x1)*(a-x1)+(b-y1)*(b-y1); cin>>x1>>y1; double d = dis(a-x1,b-y1); if(dcmp(d-r)>0) puts("Safe"); else puts("Danger"); } } return 0; }
HDU 4721 Food and Productivity
待补
HDU 4722 Good Numbers
数位DP
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <map> #include <stack> #include <queue> using namespace std; #define pb push_back #define mp make_pair typedef long long ll; ll f[20], a, b; int num[20]; ll getnum(ll x) { if (x == -1) return 0; if (x == 0) return 1; int len = 0; int tmp = 0, t = 0; while(x) { tmp += x % 10; num[len++] = x % 10; x /= 10; } tmp -= num[0]; ll ret = 0; for (int l = len-1; l >= 1; --l) ret += num[l]*f[l]; for (int i = 0; i <= num[0]; ++i) if ((tmp+i) % 10 == 0) t = 1; return ret+t; } int main() { #ifndef ONLINE_JUDGE freopen("sum.in","r",stdin); //freopen("sum.out","w",stdout); #endif f[0] = 0; f[1] = 1; for (int i = 2; i <= 19; ++i) f[i] = f[i-1]*10; int T; scanf("%d", &T); for (int ncase = 1; ncase <= T; ++ncase) { scanf("%I64d%I64d", &a, &b); printf("Case #%d: %I64d\n",ncase,getnum(b)-getnum(a-1)); } return 0; }
HDU 4723 How Long Do You Have to Draw
怎么我感觉这题不难,难道我打开的方式不对?可惜比赛时没看题。。。
给出n个纵坐标为a的点,c1<c2<...<cn
给出m个纵坐标为b的点,d1<d2<...<dm
问如何对上下点进行连边,使得三角形最多,并且边不能相交。
分析:对于下图进行分析讨论即可。
如果c点已经到了最后,则:c点连剩下的d点
如果d点已经到了最后,则:d点连剩下的c点
如果c,d后面还有,有两种情况:
1.为c1,d1,d2在c1,c2中线左边,则c1连d1,d后移
2.为c1,d2,d3在c1,c2中线右边,则c1连d1,判断c1d3,c2d2的距离,根据那个更优移动哪个点即可。
#include <set> #include <map> #include <list> #include <cmath> #include <queue> #include <stack> #include <string> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; #define debug puts("here") #define rep(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<=b;i++) #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++) #define pb push_back #define RD(n) scanf("%d",&n) #define RD2(x,y) scanf("%d%d",&x,&y) #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w) #define All(vec) vec.begin(),vec.end() #define MP make_pair #define PII pair<int,int> #define PQ priority_queue #define cmax(x,y) x = max(x,y) #define cmin(x,y) x = min(x,y) #define Clear(x) memset(x,0,sizeof(x)) /* #pragma comment(linker, "/STACK:1024000000,1024000000") int size = 256 << 20; // 256MB char *p = (char*)malloc(size) + size; __asm__("movl %0, %%esp\n" :: "r"(p) ); */ char IN; bool NEG; inline void Int(int &x){ NEG = 0; while(!isdigit(IN=getchar())) if(IN=='-')NEG = 1; x = IN-'0'; while(isdigit(IN=getchar())) x = x*10+IN-'0'; if(NEG)x = -x; } inline void LL(ll &x){ NEG = 0; while(!isdigit(IN=getchar())) if(IN=='-')NEG = 1; x = IN-'0'; while(isdigit(IN=getchar())) x = x*10+IN-'0'; if(NEG)x = -x; } /******** program ********************/ const int MAXN = 1e5+5; double c[MAXN],d[MAXN],a,b; double dis(double x,double y){ return sqrt(x*x+y*y); } double dis(double x1,double y1,double x2,double y2){ return dis(x1-x2,y1-y2); } int main(){ #ifndef ONLINE_JUDGE freopen("sum.in","r",stdin); //freopen("sum.out","w",stdout); #endif int ncase,n,m,Ncase = 0; RD(ncase); while(ncase--){ printf("Case #%d: ",++Ncase); scanf("%lf%lf",&a,&b); RD2(n,m); rep1(i,n) scanf("%lf",&c[i]); rep1(i,m) scanf("%lf",&d[i]); double ans = 0; int x = 1 ,y = 1; while(x<=n&&y<=m){ if( x==n ){ ans += dis(c[x],a,d[y],b); y ++; }else if( y==m ){ ans += dis(c[x],a,d[y],b); x ++; }else{ if(d[y+1]*2<=c[x]+c[x+1]){ ans += dis(c[x],a,d[y],b); y ++; }else{ ans += dis(c[x],a,d[y],b); double tmp = dis(c[x],a,d[y+1],b); double ret = dis(c[x+1],a,d[y],b); if(ret<tmp) x ++; else y++; } } } printf("%.2lf\n",ans); } return 0; }
HDU 4724 If You Know This,You Must Have NO GF
待补
HDU 4725 The Shortest Path in Nya Graph
使用堆维护dijkstra的算法,每次从堆中取出一个节点,如果该节点所在的层没被标记,更新相邻两层,标记上(因为每次都从堆中去最小值,因此当前层的最优值必定是第一次访问时所得,进而更新其他的层)。至于边的松弛,跟普通的dijkstra一样。详细看代码。
#include <set> #include <map> #include <list> #include <cmath> #include <queue> #include <stack> #include <string> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; #define debug puts("here") #define rep(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<=b;i++) #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++) #define pb push_back #define RD(n) scanf("%d",&n) #define RD2(x,y) scanf("%d%d",&x,&y) #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w) #define All(vec) vec.begin(),vec.end() #define MP make_pair #define PII pair<int,int> #define PQ priority_queue #define cmax(x,y) x = max(x,y) #define cmin(x,y) x = min(x,y) #define Clear(x) memset(x,0,sizeof(x)) /* #pragma comment(linker, "/STACK:1024000000,1024000000") int size = 256 << 20; // 256MB char *p = (char*)malloc(size) + size; __asm__("movl %0, %%esp\n" :: "r"(p) ); */ char IN; bool NEG; inline void Int(int &x){ NEG = 0; while(!isdigit(IN=getchar())) if(IN=='-')NEG = 1; x = IN-'0'; while(isdigit(IN=getchar())) x = x*10+IN-'0'; if(NEG)x = -x; } inline void LL(ll &x){ NEG = 0; while(!isdigit(IN=getchar())) if(IN=='-')NEG = 1; x = IN-'0'; while(isdigit(IN=getchar())) x = x*10+IN-'0'; if(NEG)x = -x; } /******** program ********************/ const int MAXN = 1e5+5; const int INF = 1e9+7; struct Edge{ int y,cost,next; }edge[MAXN<<1]; int po[MAXN],tol; vector<int> vec[MAXN]; int la[MAXN],n,per,m; int dis[MAXN]; bool use[MAXN]; bool ok[MAXN]; struct node{ int x,cost; friend bool operator < (node a,node b){ return a.cost>b.cost; } node(){} node(int _x,int _cost):x(_x),cost(_cost){} }; int dijkstra(){ priority_queue<node> q; Clear(use); rep1(i,n)dis[i] = INF; q.push(node(1,0)); dis[1] = 0; Clear(ok); while(!q.empty()){ node p = q.top(); q.pop(); int x = p.x; if(use[x])continue; use[x] = 1; if(x==n&&dis[n]<INF)break; if(!ok[la[x]]){ ok[la[x]] = 1; int now = la[x]-1; if(now) foreach(i,vec[now]){ int y = vec[now][i]; if(!use[y]&&dis[x]+per<dis[y]){ dis[y] = dis[x]+per; q.push(node(y,dis[y])); } } now += 2; if(now<=n) foreach(i,vec[now]){ int y = vec[now][i]; if(!use[y]&&dis[x]+per<dis[y]){ dis[y] = dis[x]+per; q.push(node(y,dis[y])); } } } for(int i=po[x];i;i=edge[i].next){ int y = edge[i].y; int tmp = edge[i].cost+dis[x]; if(!use[y]&&tmp<dis[y]){ dis[y] = tmp; q.push(node(y,dis[y])); } } } return dis[n]; } inline void add(int x,int y,int cost){ edge[++tol].y = y; edge[tol].cost = cost; edge[tol].next = po[x]; po[x] = tol; } int main(){ #ifndef ONLINE_JUDGE freopen("cf.in","r",stdin); //freopen("sum.out","w",stdout); #endif int x,y,c,ncase,Ncase = 0; RD(ncase); while(ncase--){ printf("Case #%d: ",++Ncase); RD3(n,m,per); rep1(i,n) vec[i].clear(); rep1(i,n){ RD(la[i]); vec[la[i]].pb(i); } Clear(po); tol = 0; while(m--){ RD3(x,y,c); add(x,y,c); add(y,x,c); } int ans = dijkstra(); printf("%d\n",ans==INF?-1:ans); } return 0; }
HDU 4726 Kia's Calculation
贪心。第一位想清楚了,后面的直接贪心。略
HDU 4727 The Number Off of FFF
水题。注意全对时输出1。略