题意:有N个点,M条边(有重边)的无向图,这样图中会可能有桥,问加一条边后,使桥最少,求该桥树。
思路:这个标准想法很好想到,缩点后,求出图中的桥的个数,然后重建图必为树,求出树的最长直径,在该直径的两端点连一边,则图中的桥会最少。
从这题中学到两点,所以写一下解题报告。
1.官方说judge的栈小,得手动增栈 #pragma comment(linker,"/STACK:102400000,102400000") 以前没见过,算是学习了。
2.对改正了对Tarjan算法的一个错误理解,以前看某人博客说,无向图中,Tarjan后low值相等的点属于同一块,以前这样判断过,也过了挺多题。但跟别人讨论后发现是错的。。。。。
3.以前没用Tarjan写过无向图,不懂正向边访问过,标志反向边,这次学习了。
//937MS 41304K #pragma comment(linker, "/STACK:102400000,102400000") #include #include const int VM = 200005; const int EM = 1000005; struct Edeg { int to,nxt,vis; }edge[EM<<1],tree[EM<<1]; int head[VM],vis[VM],thead[VM]; int dfn[VM],low[VM],stack[VM],belong[VM]; int ep,bridge,son,maxn,src,n,cnt,scc,top; int max (int a,int b) { return a > b ? a : b; } int min(int a ,int b) { return a > b ? b : a; } void addedge (int cu,int cv) { edge[ep].to = cv; edge[ep].vis = 0; edge[ep].nxt = head[cu]; head[cu] = ep ++; edge[ep].to = cu; edge[ep].vis = 0; edge[ep].nxt = head[cv]; head[cv] = ep ++; } void Buildtree(int cu,int cv) { tree[son].to = cv; tree[son].nxt = thead[cu]; thead[cu] = son ++; } void Tarjan (int u) { int v; vis[u] = 1; dfn[u] = low[u] = ++cnt; stack[top++] = u; for (int i = head[u];i != -1;i = edge[i].nxt) { v = edge[i].to; if (edge[i].vis) continue; // edge[i].vis = edge[i^1].vis = 1; //正向边访问过了,反向边得标志,否则两点会成一块。 if (vis[v] == 1) low[u] = min(low[u],dfn[v]); if (!vis[v]) { Tarjan (v); low[u] = min(low[u],low[v]); if (low[v] > dfn[u]) bridge ++; } } if (dfn[u] == low[u]) { ++scc; do{ v = stack[--top]; vis[v] = 0; belong[v] = scc; }while (u != v); } } void BFS(int u) { int que[VM+100]; int front ,rear,i,v; front = rear = 0; memset (vis,0,sizeof(vis)); que[rear++] = u; vis[u] = 1; while (front != rear) { u = que[front ++]; front = front % (n+1); for (i = thead[u];i != -1;i = tree[i].nxt) { v = tree[i].to; if (vis[v]) continue; vis[v] = 1; que[rear++] = v; rear = rear%(n+1); } } src = que[--rear];//求出其中一个端点 } void DFS (int u,int dep) { maxn = max (maxn,dep); vis[u] = 1; for (int i = thead[u]; i != -1; i = tree[i].nxt) { int v = tree[i].to; if (!vis[v]) DFS (v,dep+1); } } void solve() { int u,v; memset (vis,0,sizeof(vis)); cnt = bridge = scc = top = 0; Tarjan (1); memset (thead,-1,sizeof(thead)); son = 0; for (u = 1;u <= n;u ++) //重构图 for (int i = head[u];i != -1;i = edge[i].nxt) { v = edge[i].to; if (belong[u]!=belong[v]) { Buildtree (belong[u],belong[v]); Buildtree (belong[v],belong[u]); } } maxn = 0; //最长直径 BFS(1); //求树直径的一个端点 memset (vis,0,sizeof(vis)); DFS(src,0); //求树的最长直径 printf ("%d\n",bridge-maxn); } int main () { #ifdef LOCAL freopen ("in.txt","r",stdin); #endif int m,u,v; while (~scanf ("%d%d",&n,&m)) { if (n == 0&&m == 0) break; memset (head,-1,sizeof(head)); ep = 0; while (m --) { scanf ("%d%d",&u,&v); addedge (u,v); } solve(); } return 0; }