HDU 4714 Tree2cycle(树状DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup)

Description

A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 unit of cost respectively. The nodes are labeled from 1 to N. Your job is to transform the tree to a cycle(without superfluous edges) using minimal cost.  
A cycle of n nodes is defined as follows: (1)a graph with n nodes and n edges (2)the degree of every node is 2 (3) each node can reach every other node with these N edges.
 

Input

The first line contains the number of test cases T( T<=10 ). Following lines are the scenarios of each test case.   In the first line of each test case, there is a single integer N( 3<=N<=1000000 ) - the number of nodes in the tree. The following N-1 lines describe the N-1 edges of the tree. Each line has a pair of integer U, V ( 1<=U,V<=N ), describing a bidirectional edge (U, V).  
 

Output

For each test case, please output one integer representing minimal cost to transform the tree to a cycle.  

 

题目大意:一棵有n个点的树,删边需要1的费用,增边需要1的费用,问最少需要多少费用才能得到一个环,不能用多余的边(即总共n条边)。

思路:首先我们可以这样考虑:我们先删掉x条边,那么之后再加上x+1条边,形成一个环。我们删掉x条边后,所有的点的度都不能大于2,那么就会出现多条链,再用x+1条边把这些链首尾相接就可以形成一个环。现在问题就转化成了给一棵树,问最少删掉多少条边,使得每个点的度不大于2。然后就是树状DP,用dp[i][0]表示,第i个点,连0个或1个子节点(度小于2)的最小费用。用dp[i][1]表示,第i个点,连0个或1个或2个子节点(度小于等于2)的最小费用。这样对每个点选择是不连或者连一个子节点,还是连两个子节点。然后随便搞,时间复杂度为O(n)。

PS:100W个点我看到好多人栈溢出了所以大家还是写非递归吧(实际上会不会溢出我不知道我没试过我一开始就写非递归)……我极少写非递归可能写得比较挫……

 

代码(2703MS):

 1 #include <cstdio>

 2 #include <cstring>

 3 #include <algorithm>

 4 #include <queue>

 5 using namespace std;

 6 

 7 const int MAXN = 1000010;

 8 const int MAXE = MAXN * 2;

 9 

10 int head[MAXN];

11 int stk[MAXN], stkp[MAXN], top;

12 int next[MAXE], to[MAXE];

13 int ecnt, n, T;

14 

15 void init() {

16     memset(head, 0, sizeof(head));

17     ecnt = 1;

18 }

19 

20 void add_edge(int u, int v) {

21     to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;

22     to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;

23 }

24 

25 int dp[MAXN][2];

26 //0:连0 or 1个子节点,1:连两个子节点

27 int solve() {

28     top = 1;

29     stk[top] = 1; stkp[top] = head[1];

30     while(top > 0) {

31         int &p = stkp[top], u = stk[top];

32         if(to[p] == stk[top - 1]) p = next[p];

33         if(p) {

34             int &v = to[p];

35             ++top; stk[top] = v; stkp[top] = head[v];

36             p = next[p];

37         }

38         else {

39             int min1 = MAXN, min2 = MAXN;

40             dp[u][0] = 0;

41             for(int q = head[u]; q; q = next[q]) {

42                 int &v = to[q];

43                 if(v == stk[top - 1]) continue;

44                 ++dp[u][0];

45                 dp[u][0] += min(dp[v][0], dp[v][1]);

46                 int x = dp[v][0] - min(dp[v][0], dp[v][1]);

47                 if(x < min1) {

48                     min2 = min1;

49                     min1 = x;

50                 }

51                 else min2 = min(min2, x);

52             }

53             int best = dp[u][0];

54             dp[u][0] = min(dp[u][0], best - 1 + min1);

55             dp[u][1] = min(dp[u][0], best - 2 + min1 + min2);

56             --top;

57         }

58     }

59     return 2 * min(dp[1][0], dp[1][1]) + 1;

60 }

61 

62 int main() {

63     scanf("%d", &T);

64     while(T--) {

65         scanf("%d", &n);

66         init();

67         int u, v;

68         for(int i = 1; i < n; ++i) {

69             scanf("%d%d", &u, &v);

70             add_edge(u, v);

71         }

72         printf("%d\n", solve());

73     }

74 }
View Code

 

你可能感兴趣的:(online)