我们知道hadoop将数据给到map进行处理前会使用InputFormat对数据进行两方面的预处理:
最常见的FormatInput就是TextInputFormat,在split的读取方面,它是将给到的Split按行读取,以行首字节在文件中的偏移做key,以行数据做value传给map函数处理,这部分的逻辑是由它所创建并使用的RecordReader:LineRecordReader封装和实现的.关于这部分逻辑,在一开始接触hadoop时会有一个常见的疑问:如果一个行被切分到两个split里(这几乎是一定会发生的情况),TextInputFormat是如何处理的?如果是生硬地把一行切割到两个split里,是对数据的一种破坏,可能会影响数据分析的正确性(比如word count就是一个例子).搞清楚这个问题还是需要从源码入手了解TextInputFormat的详细工作方式,这里简单地梳理记录如下(本文参考的是hadoop1.1.2的源码):
1. LineRecordReader会创建一个org.apache.hadoop.util.LineReader实例,并依赖这个LineReader的readLine方法来读取一行记录,具体可参考org.apache.hadoop.mapred.LineRecordReader.next(LongWritable, Text),Line 176),那么关键的逻辑就在这个readLine方法里了,下面是添加了额外中文注释的该方法源码.这个方法主要的逻辑归纳起来是3点:
/** * Read one line from the InputStream into the given Text. A line * can be terminated by one of the following: '\n' (LF) , '\r' (CR), * or '\r\n' (CR+LF). EOF also terminates an otherwise unterminated * line. * * @param str the object to store the given line (without newline) * @param maxLineLength the maximum number of bytes to store into str; * the rest of the line is silently discarded. * @param maxBytesToConsume the maximum number of bytes to consume * in this call. This is only a hint, because if the line cross * this threshold, we allow it to happen. It can overshoot * potentially by as much as one buffer length. * * @return the number of bytes read including the (longest) newline * found. * * @throws IOException if the underlying stream throws */ public int readLine(Text str, int maxLineLength, int maxBytesToConsume) throws IOException { /* We're reading data from in, but the head of the stream may be * already buffered in buffer, so we have several cases: * 1. No newline characters are in the buffer, so we need to copy * everything and read another buffer from the stream. * 2. An unambiguously terminated line is in buffer, so we just * copy to str. * 3. Ambiguously terminated line is in buffer, i.e. buffer ends * in CR. In this case we copy everything up to CR to str, but * we also need to see what follows CR: if it's LF, then we * need consume LF as well, so next call to readLine will read * from after that. * We use a flag prevCharCR to signal if previous character was CR * and, if it happens to be at the end of the buffer, delay * consuming it until we have a chance to look at the char that * follows. */ str.clear(); int txtLength = 0; //tracks str.getLength(), as an optimization int newlineLength = 0; //length of terminating newline boolean prevCharCR = false; //true of prev char was CR long bytesConsumed = 0; do { int startPosn = bufferPosn; //starting from where we left off the last time //如果buffer中的数据读完了,先加载一批数据到buffer里 if (bufferPosn >= bufferLength) { startPosn = bufferPosn = 0; if (prevCharCR) ++bytesConsumed; //account for CR from previous read bufferLength = in.read(buffer); if (bufferLength <= 0) break; // EOF } //注意:这里的逻辑有点tricky,由于不同操作系统对“行结束符“的定义不同: //UNIX: '\n' (LF) //Mac: '\r' (CR) //Windows: '\r\n' (CR)(LF) //为了准确判断一行的结尾,程序的判定逻辑是: //1.如果当前符号是LF,可以确定一定是到了行尾,但是需要参考一下前一个 //字符,因为如果前一个字符是CR,那就是windows文件,“行结束符的长度” //(即变量:newlineLength,这个变量名起的有点糟糕)应该是2,否则就是UNIX文件,“行结束符的长度”为1。 //2.如果当前符号不是LF,看一下前一个符号是不是CR,如果是也可以确定一定上个字符就是行尾了,这是一个mac文件。 //3.如果当前符号是CR的话,还需要根据下一个字符是不是LF判断“行结束符的长度”,所以只是标记一下prevCharCR=true,供读取下个字符时参考。 for (; bufferPosn < bufferLength; ++bufferPosn) { //search for newline if (buffer[bufferPosn] == LF) { newlineLength = (prevCharCR) ? 2 : 1; ++bufferPosn; // at next invocation proceed from following byte break; } if (prevCharCR) { //CR + notLF, we are at notLF newlineLength = 1; break; } prevCharCR = (buffer[bufferPosn] == CR); } int readLength = bufferPosn - startPosn; if (prevCharCR && newlineLength == 0) --readLength; //CR at the end of the buffer bytesConsumed += readLength; int appendLength = readLength - newlineLength; if (appendLength > maxLineLength - txtLength) { appendLength = maxLineLength - txtLength; } if (appendLength > 0) { str.append(buffer, startPosn, appendLength); txtLength += appendLength; }//newlineLength == 0 就意味着始终没有读到行尾,程序会继续通过文件输入流继续从文件里读取数据。 //这里有一个非常重要的地方:in的实例创建自构造函数:org.apache.hadoop.mapred.LineRecordReader.LineRecordReader(Configuration, FileSplit) //第86行:FSDataInputStream fileIn = fs.open(split.getPath()); 我们看以看到: //对于LineRecordReader:当它对取“一行”时,一定是读取到完整的行,不会受filesplit的任何影响,因为它读取是filesplit所在的文件,而不是限定在filesplit的界限范围内。 //所以不会出现“断行”的问题! } while (newlineLength == 0 && bytesConsumed < maxBytesToConsume); if (bytesConsumed > (long)Integer.MAX_VALUE) throw new IOException("Too many bytes before newline: " + bytesConsumed); return (int)bytesConsumed; }
2. 按照readLine的上述行为,在遇到跨split的行时,会到下一个split继续读取数据直至行尾,那么下一个split怎么判定开头的一行有没有被上一个split的LineRecordReader读取过从而避免漏读或重复读取开头一行呢?这方面LineRecordReader使用了一个简单而巧妙的方法:既然无法断定每一个split开始的一行是独立的一行还是被切断的一行的一部分,那就跳过每个split的开始一行(当然要除第一个split之外),从第二行开始读取,然后在到达split的结尾端时总是再多读一行,这样数据既能接续起来又避开了断行带来的麻烦.以下是相关的源码:
在LineRecordReader的构造函数org.apache.hadoop.mapred.LineRecordReader.LineRecordReader(Configuration, FileSplit) 108到113行确定start位置时,明确注明::会特别地忽略掉第一行!
// If this is not the first split, we always throw away first record // because we always (except the last split) read one extra line in // next() method. if (start != 0) { start += in.readLine(new Text(), 0, maxBytesToConsume(start)); }
相应地,在LineRecordReader判断是否还有下一行的方法:org.apache.hadoop.mapred.LineRecordReader.next(LongWritable, Text) 170到173行中,while使用的判定条件是:当前位置小于 或等于split的结尾位置,也就说 :当当前以处于split的结尾位置上时,while依然会执行一次,这一次读到显然已经是下一个split的开始行了!
// We always read one extra line, which lies outside the upper // split limit i.e. (end - 1) while (getFilePosition() <= end) { ...
小结:
至此,跨split的行读取的逻辑就完备了. 如果引申地来看,这是map-reduce前期数据切分的一个普遍性问题,即不管我们用什么方式切分和读取一份大数据中的小部分,包括我们在实现自己的InputFormat时,都会面临在切分处数据时的连续性解析问题. 对此我们应该深刻地认识到:split最直接的现实作用是取出大数据中的一小部分给mapper处理,但这只是一种"逻辑"上的,"宏观"上的切分,在"微观"上,在split的首尾切分处,为了确保数据连续性,跨越split接续并拼接数据也是完全正当和合理的.