转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1302523813
大致题意:
一个1X1的正方形,每条边上有n个不同的点(不包括顶点),并给出它们的坐标。现在把对边相对应的点相连,将正方形分割成(n+1)*(n+1)个小四边形。问最大的四边形的面积是多少。
解题思路:
计算几何求面积的题,算半条水题吧。。
基本思路:
构造所有的线段,然后枚举每对水平-竖直线段,求交点,然后计算四边形面积,求最大值。
应用知识:
叉积(规范相交)
多边形分解
三角形基于计算几何的面积公式(注意正负)
我先建立一个数学模型说明问题:
|
以n=3为例画图 (当然实际上内部的线不一定是正交的,这里只是为了简单说明)
第一步建立一个大小为 (n+2)*(n+2) 的二维交点矩阵node,每个元素存储一个交点坐标(x,y)
由于四角交点为定点,每条边上的交点又是输入值,那么外围一圈的交点都是已知了
由于对边的点是对应相连的,因此要求的就是内部n*n个交点
显然地,所求的所有交点都是某两条直线规范相交所得,因此就可以直接使用求规范相交的交点的公式,而不需要套用模板了
交点公式 (及推导过程) 请参看 刘汝佳《算法艺术与信息学竞赛》P357 这里不再说明
通过两两枚举所有内部直线,就能得到 交点矩阵node[][]
那么剩下的问题就是求出所有 简单四边形(不包含其他四边形) 的面积,输出最大的一个。那么问题就是:已知一个不规则四边形四个角的坐标,求它的面积
由于四边形是不规则的,直接求解其面积是非常困难的,唯有将其划分为两个三角形,分别求出两个三角形的面积,再相加
如图,我求解所有四边形时都是采用如图的划分方法
那么问题进一步转化为“已知不规则三角形三个角的坐标,如何求其面积”
不用比较都看得出,计算几何的方法远远优于解析几何,不但省去计算一堆长度的麻烦(避免了精度误差),而且还能利用计算交点时 计算叉积的功能函数cross()
使用计算几何,不但运算量大大减少了,代码也写少了,结果还更精确
不过有一点要注意的是,计算几何计算的面积是有方向的,即面积可能为负,所以绝对值必不可少,这点千万注意
1 //Memory Time
2 //544K 16MS
3
4 #include<iostream>
5 #include<cmath>
6 #include<iomanip>
7 using namespace std;
8
9 typedef class Node
10 {
11 public:
12 double x,y;
13 }location;
14
15 double det(double x1,double y1,double x2,double y2)
16 {
17 return x1*y2-x2*y1;
18 }
19
20 double cross(location A,location B,location C,location D) //计算 AB x CD
21 {
22 return det(B.x-A.x , B.y-A.y , D.x-C.x , D.y-C.y);
23 }
24
25 /*Compute Intersection*/
26
27 double xx,yy; //坐标返回值
28 void intersection(location A,location B,location C,location D)
29 {
30 double area1=cross(A,B,A,C);
31 double area2=cross(A,B,A,D);
32
33 xx=(area2*C.x - area1*D.x)/(area2-area1); //本题所求的交点一定是规范相交所得,因此无需判断是否规范相交
34 yy=(area2*C.y - area1*D.y)/(area2-area1);
35 return;
36 }
37
38 /*Compute Area*/
39
40 double area(location A,location B,location C,location D)
41 {
42 double triangle1=fabs(0.5*cross(A,B,A,C)); //用计算几何的方法计算的面积是有向面积
43 double triangle2=fabs(0.5*cross(A,B,A,D)); //即算出来的面积可能为负数,因此必须用绝对值
44 // fabs() 为取double的绝对值函数
45 return triangle1+triangle2;
46 }
47
48 int main(int i,int j,int k)
49 {
50 int n;
51 while(cin>>n)
52 {
53 if(!n)
54 break;
55
56 /*Initial*/
57
58 location** node=new location*[n+2];
59 node[0]=new location[n+2]; //下边
60 node[n+1]=new location[n+2]; //上边
61
62 /*Input Down-edge*/
63
64 node[0][0].x = node[0][0].y =0.0;
65 for(i=1;i<=n;i++)
66 {
67 cin>>node[0][i].x;
68 node[0][i].y=0.0;
69 }
70 node[0][n+1].x=1.0;
71 node[0][n+1].y=0.0;
72
73 /*Input Up-edge*/
74
75 node[n+1][0].x=0.0;
76 node[n+1][0].y=1.0;
77 for(i=1;i<=n;i++)
78 {
79 cin>>node[n+1][i].x;
80 node[n+1][i].y=1.0;
81 }
82 node[n+1][n+1].x=1.0;
83 node[n+1][n+1].y=1.0;
84
85 /*Input Left-edge*/
86
87 for(i=1;i<=n;i++)
88 {
89 node[i]=new location[n+2];
90 cin>>node[i][0].y;
91 node[i][0].x=0.0;
92 }
93
94 /*Input right-edge*/
95
96 for(i=1;i<=n;i++)
97 {
98 cin>>node[i][n+1].y;
99 node[i][n+1].x=1.0;
100 }
101
102 /*Compute Intersection*/
103
104 for(j=1;j<=n;j++)
105 for(i=1;i<=n;i++)
106 {
107 intersection(node[0][j],node[n+1][j],node[i][0],node[i][n+1]);
108 node[i][j].x=xx;
109 node[i][j].y=yy;
110 }
111
112 /*Compute Area*/
113
114 double max_area=0.0;
115
116 for(i=1;i<=n+1;i++)
117 for(j=1;j<=n+1;j++)
118 {
119 double temp=area(node[i-1][j-1],node[i][j],node[i][j-1],node[i-1][j]);
120 if(max_area < temp)
121 max_area = temp;
122 }
123
124
125 /*Output*/
126
127 cout<<fixed<<setprecision(6)<<max_area<<endl;
128
129 /*Realx Room*/
130
131 delete[] node;
132 }
133 return 0;
134 }