It is well known that you cannot make a triangle with non-zero area whose sides have lengths 1, 2, 3. Can you make a tetrahedron(四面体) with non-zero volume whose edges have lengths 1, 2, 3, 4, 5, 6?
It is well known that you cannot make a triangle with non-zero area whose sides have lengths 1, 2, 3. Can you make a tetrahedron(四面体) with non-zero volume whose edges have lengths 1, 2, 3, 4, 5, 6?
The first line of input contains an integer 0 < n <= 10000, the number of lines to follow. Each of the next n lines contains six positive integers separated by spaces, the lengths of the edges of the desired tetrahedron. The length of each edge is no greater than 1000000.
Output n lines, each containing the word YES if it is possible to construct a tetrahedron with non-zero volume with the given edge lengths, or the word NO if it is not possible.
#include<stdio.h> #include<math.h> int judge(double a,double b,double c) //判定能否组成三角形 { if(a+b>c&&a+c>b&&b+c>a) return 1; else return 0; } int cal(double a,double b,double c,double d,double e,double f) { if(a>1000) { a/=1000.0; b/=1000.0; c/=1000.0; d/=1000.0; e/=1000.0; f/=1000.0; } double L1,L2,h1,h2,x1,x2,ff; L1=(a+b+d)/2.0; L2=(a+c+e)/2.0; h1=2*sqrt(L1)*sqrt(L1-a)/a*sqrt(L1-b)*sqrt(L1-d);// h2=2*sqrt(L2)*sqrt(L2-a)/a*sqrt(L2-c)*sqrt(L2-e); x1=(b*b+e*e-d*d-c*c)/4/a/a*(b*b+e*e-d*d-c*c);//是平方过的, //x2=(b*b+e*e-d*d-c*c)*(b*b+e*e-d*d-c*c)/4/a/a; ff=f*f; if(ff<(h1+h2)*(h1+h2)+x1&&ff>(h1-h2)*(h1-h2)+x1) return 1; else return 0; } int main() { int t,a,b,c,d,e,f,i,j; double r[6]; scanf("%d",&t); while(t--) { for(i=0;i<6;i++) scanf("%lf",&r[i]); for(j=0,a=0;a<5;a++) { for(b=0;b<5;b++) { if(a!=b) for(c=0;c<5;c++) {if(a!=c&&b!=c) for(d=0;d<5;d++) {if(a!=d&&d!=c&&b!=d&&judge(r[a],r[b],r[d])) for(e=0;e<5;e++) {if(a!=e&&d!=e&&b!=e&&c!=e) if(judge(r[a],r[c],r[e])) { if(cal(r[a],r[b],r[c],r[d],r[e],r[5])) { j++; break; } } if(j) break; } if(j) break; } if(j) break; } if(j) break; } if(j) break; } if(j) printf("YES\n"); else printf("NO\n"); } return 0; }