Oracle 9i 分析函数参考手册


PERCENTILE_DISC
功能描述:返回一个与输入的分布百分比值相对应的数据值,分布百分比的计算方法见函数CUME_DIST,如果没有正好对应的数据值,就取大于该分布值的下一个值。
注意:本函数与PERCENTILE_CONT的区别在找不到对应的分布值时返回的替代值的计算方法不同

SAMPLE:下例中0.7的分布值在部门30中没有对应的Cume_Dist值,所以就取下一个分布值0.83333333所对应的SALARY来替代

SELECT last_name, salary, department_id,
         PERCENTILE_DISC(0.7) WITHIN GROUP (ORDER BY salary )
         OVER (PARTITION BY department_id) "Percentile_Disc",
         CUME_DIST() OVER (PARTITION BY department_id ORDER BY salary)        "Cume_Dist"
    FROM employees
WHERE department_id in (30, 60);

LAST_NAME                       SALARY DEPARTMENT_ID Percentile_Disc    Cume_Dist
------------------------- ---------- ------------- --------------- ----------
Colmenares                        2500              30              3100 .166666667
Himuro                            2600              30              3100 .333333333
Tobias                            2800              30              3100           .5
Baida                             2900              30              3100 .666666667
Khoo                              3100              30              3100 .833333333
Raphaely                         11000              30              3100            1
Lorentz                           4200              60              6000           .2
Austin                            4800              60              6000           .6
Pataballa                         4800              60              6000           .6
Ernst                             6000              60              6000           .8
Hunold                            9000              60              6000            1


RANK
功能描述:根据ORDER BY子句中表达式的值,从查询返回的每一行,计算它们与其它行的相对位置。组内的数据按ORDER BY子句排序,然后给每一行赋一个号,从而形成一个序列,该序列从1开始,往后累加。每次ORDER BY表达式的值发生变化时,该序列也随之增加。有同样值的行得到同样的数字序号(认为null时相等的)。然而,如果两行的确得到同样的排序,则序数将随 后跳跃。若两行序数为1,则没有序数2,序列将给组中的下一行分配值3,DENSE_RANK则没有任何跳跃。
SAMPLE:下例中计算每个员工按部门分区再按薪水排序,依次出现的序列号(注意与DENSE_RANK函数的区别)

SELECT d.department_id , e.last_name, e.salary, RANK()
          OVER (PARTITION BY e.department_id ORDER BY e.salary) as drank
    FROM employees e, departments d
WHERE e.department_id = d.department_id
     AND d.department_id IN ('60', '90');

DEPARTMENT_ID LAST_NAME                       SALARY        DRANK
------------- ------------------------- ---------- ----------
             60 Lorentz                           4200            1
             60 Austin                            4800            2
             60 Pataballa                         4800            2
             60 Ernst                             6000            4
             60 Hunold                            9000            5
             90 Kochhar                          17000            1
             90 De Haan                          17000            1
             90 King                             24000            3


RATIO_TO_REPORT
功能描述:该函数计算expression/(sum(expression))的值,它给出相对于总数的百分比,即当前行对sum(expression)的贡献。
SAMPLE:下例计算每个员工的工资占该类员工总工资的百分比

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
    FROM employees
WHERE job_id = 'PU_CLERK';

LAST_NAME                       SALARY           RR
------------------------- ---------- ----------
Khoo                              3100 .223021583
Baida                             2900 .208633094
Tobias                            2800 .201438849
Himuro                            2600    .18705036
Colmenares                        2500 .179856115


REGR_ (Linear Regression) Functions
功能描述:这些线性回归函数适合最小二乘法回归线,有9个不同的回归函数可使用。
            REGR_SLOPE:返回斜率,等于COVAR_POP(expr1, expr2) / VAR_POP(expr2)
            REGR_INTERCEPT:返回回归线的y截距,等于
                            AVG(expr1) - REGR_SLOPE(expr1, expr2) * AVG(expr2)
            REGR_COUNT:返回用于填充回归线的非空数字对的数目
            REGR_R2:返回回归线的决定系数,计算式为:
                     If VAR_POP(expr2)    = 0 then return NULL
                     If VAR_POP(expr1)    = 0 and VAR_POP(expr2) != 0 then return 1
                     If VAR_POP(expr1)    > 0 and VAR_POP(expr2    != 0 then
                        return POWER(CORR(expr1,expr),2)
            REGR_AVGX:计算回归线的自变量(expr2)的平均值,去掉了空对(expr1, expr2)后,等于AVG(expr2)
            REGR_AVGY:计算回归线的应变量(expr1)的平均值,去掉了空对(expr1, expr2)后,等于AVG(expr1)
            REGR_SXX: 返回值等于REGR_COUNT(expr1, expr2) * VAR_POP(expr2)
            REGR_SYY: 返回值等于REGR_COUNT(expr1, expr2) * VAR_POP(expr1)
            REGR_SXY:    返回值等于REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)

(下面的例子都是在SH用户下完成的)
SAMPLE 1:下例计算1998年最后三个星期中两种产品(260和270)在周末的销售量中已开发票数量和总数量的累积斜率和回归线的截距

SELECT t.fiscal_month_number "Month", t.day_number_in_month "Day",
         REGR_SLOPE(s.amount_sold, s.quantity_sold)
           OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_SLOPE,
         REGR_INTERCEPT(s.amount_sold, s.quantity_sold)
           OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month) AS CUM_ICPT
    FROM sales s, times t
WHERE s.time_id = t.time_id
     AND s.prod_id IN (270, 260)
     AND t.fiscal_year=1998
     AND t.fiscal_week_number IN (50, 51, 52)
     AND t.day_number_in_week IN (6,7)
     ORDER BY t.fiscal_month_desc, t.day_number_in_month;

       Month          Day    CUM_SLOPE     CUM_ICPT
---------- ---------- ---------- ----------
          12           12          -68         1872
          12           12          -68         1872
          12           13 -20.244898 1254.36735
          12           13 -20.244898 1254.36735
          12           19 -18.826087         1287
          12           20 62.4561404    125.28655
          12           20 62.4561404    125.28655
          12           20 62.4561404    125.28655
          12           20 62.4561404    125.28655
          12           26 67.2658228 58.9712313
          12           26 67.2658228 58.9712313
          12           27 37.5245541 284.958221
          12           27 37.5245541 284.958221
          12           27 37.5245541 284.958221

SAMPLE 2:下例计算1998年4月每天的累积交易数量

SELECT UNIQUE t.day_number_in_month,
         REGR_COUNT(s.amount_sold, s.quantity_sold)
          OVER (PARTITION BY t.fiscal_month_number ORDER BY t.day_number_in_month)
      "Regr_Count"
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.fiscal_year = 1998 AND t.fiscal_month_number = 4;

DAY_NUMBER_IN_MONTH Regr_Count
------------------- ----------
                    1          825
                    2         1650
                    3         2475
                    4         3300
.
.
.
                   26        21450
                   30        22200

SAMPLE 3:下例计算1998年每月销售量中已开发票数量和总数量的累积回归线决定系数

SELECT t.fiscal_month_number,
         REGR_R2(SUM(s.amount_sold), SUM(s.quantity_sold))
            OVER (ORDER BY t.fiscal_month_number) "Regr_R2"
     FROM sales s, times t
     WHERE s.time_id = t.time_id
     AND t.fiscal_year = 1998
     GROUP BY t.fiscal_month_number
     ORDER BY t.fiscal_month_number;

FISCAL_MONTH_NUMBER      Regr_R2
------------------- ----------
                    1
                    2            1
                    3 .927372984
                    4 .807019972
                    5 .932745567
                    6    .94682861
                    7 .965342011
                    8 .955768075
                    9 .959542618
                   10 .938618575
                   11 .880931415
                   12 .882769189

SAMPLE 4:下例计算1998年12月最后两周产品260的销售量中已开发票数量和总数量的累积平均值

SELECT t.day_number_in_month,
     REGR_AVGY(s.amount_sold, s.quantity_sold)
        OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
        "Regr_AvgY",
     REGR_AVGX(s.amount_sold, s.quantity_sold)
        OVER (ORDER BY t.fiscal_month_desc, t.day_number_in_month)
        "Regr_AvgX"
     FROM sales s, times t
     WHERE s.time_id = t.time_id
        AND s.prod_id = 260
        AND t.fiscal_month_desc = '1998-12'
        AND t.fiscal_week_number IN (51, 52)
     ORDER BY t.day_number_in_month;

DAY_NUMBER_IN_MONTH    Regr_AvgY    Regr_AvgX
------------------- ---------- ----------
                   14          882         24.5
                   14          882         24.5
                   15          801        22.25
                   15          801        22.25
                   16        777.6         21.6
                   18 642.857143 17.8571429
                   18 642.857143 17.8571429
                   20        589.5       16.375
                   21          544 15.1111111
                   22 592.363636 16.4545455
                   22 592.363636 16.4545455
                   24 553.846154 15.3846154
                   24 553.846154 15.3846154
                   26          522         14.5
                   27        578.4 16.0666667

你可能感兴趣的:(oracle)