教你怎样迅速秒杀掉:99%的海量数据处理面试题
作者:July
出处:结构之法算法之道blog
一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,假设读者读罢此文,却无不论什么收获,那么,我也甘愿背负这种罪名,:-),同一时候,此文能够看做是对这篇文章:十道海量数据处理面试题与十个方法大总结的一般抽象性总结。
毕竟受文章和理论之限,本文将摒弃绝大部分的细节,仅仅谈方法/模式论,且注重用最通俗最直白的语言阐述相关问题。最后,有一点必须强调的是,全文行文是基于面试题的分析基础之上的,详细实践过程中,还是得详细情况详细分析,且各个场景下须要考虑的细节也远比本文所描写叙述的不论什么一种解决方法复杂得多。
OK,若有不论什么问题,欢迎随时指教。谢谢。
所谓海量数据处理,无非就是基于海量数据上的存储、处理、操作。何谓海量,就是数据量太大,所以导致要么是无法在较短时间内迅速解决,要么是数据太大,导致无法一次性装入内存。
那解决的方法呢?针对时间,我们能够採用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树,针对空间,无非就一个办法:大而化小,分而治之(hash映射),你不是说规模太大嘛,那简单啊,就把规模大化为规模小的,各个击破不就完了嘛。
至于所谓的单机及集群问题,通俗点来讲,单机就是处理装载数据的机器有限(仅仅要考虑cpu,内存,硬盘的数据交互),而集群,机器有多辆,适合分布式处理,并行计算(很多其它考虑节点和节点间的数据交互)。
再者,通过本blog内的有关海量数据处理的文章:Big Data Processing,我们已经大致知道,处理海量数据问题,无非就是:
以下,本文第一部分、从set/map谈到hashtable/hash_map/hash_set,简要介绍下set/map/multiset/multimap,及hash_set/hash_map/hash_multiset/hash_multimap之区别(万丈高楼平地起,基础最重要),而本文第二部分,则针对上述那6种方法模式结合相应的海量数据处理面试题分别详细阐述。
稍后本文第二部分中将多次提到hash_map/hash_set,以下稍稍介绍下这些容器,以作为基础准备。一般来说,STL容器分两种,
所谓关联式容器,相似关联式数据库,每笔数据或每一个元素都有一个键值(key)和一个实值(value),即所谓的Key-Value(键-值对)。当元素被插入到关联式容器中时,容器内部结构(RB-tree/hashtable)便依照其键值大小,以某种特定规则将这个元素放置于适当位置。
包括在非关联式数据库中,比方,在MongoDB内,文档(document)是最主要的数据组织形式,每一个文档也是以Key-Value(键-值对)的方式组织起来。一个文档能够有多个Key-Value组合,每一个Value能够是不同的类型,比方String、Integer、List等等。
{ "name" : "July",
"sex" : "male",
"age" : 23 }
set/map/multiset/multimap
set,同map一样,全部元素都会依据元素的键值自己主动被排序,由于set/map两者的全部各种操作,都仅仅是转而调用RB-tree的操作行为,只是,值得注意的是,两者都不同意两个元素有同样的键值。
不同的是:set的元素不像map那样能够同一时候拥有实值(value)和键值(key),set元素的键值就是实值,实值就是键值,而map的全部元素都是pair,同一时候拥有实值(value)和键值(key),pair的第一个元素被视为键值,第二个元素被视为实值。
至于multiset/multimap,他们的特性及使用方法和set/map全然同样,唯一的区别就在于它们同意键值反复,即全部的插入操作基于RB-tree的insert_equal()而非insert_unique()。
hash_set/hash_map/hash_multiset/hash_multimap
hash_set/hash_map,两者的一切操作都是基于hashtable之上。不同的是,hash_set同set一样,同一时候拥有实值和键值,且实质就是键值,键值就是实值,而hash_map同map一样,每一个元素同一时候拥有一个实值(value)和一个键值(key),所以其使用方式,和上面的map基本同样。但由于hash_set/hash_map都是基于hashtable之上,所以不具备自己主动排序功能。为什么?由于hashtable没有自己主动排序功能。
至于hash_multiset/hash_multimap的特性与上面的multiset/multimap全然同样,唯一的区别就是它们hash_multiset/hash_multimap的底层实现机制是hashtable(而multiset/multimap,上面说了,底层实现机制是RB-tree),所以它们的元素都不会被自己主动排序,只是也都同意键值反复。
所以,综上,说白了,什么样的结构决定其什么样的性质,由于set/map/multiset/multimap都是基于RB-tree之上,所以有自己主动排序功能,而hash_set/hash_map/hash_multiset/hash_multimap都是基于hashtable之上,所以不含有自己主动排序功能,至于加个前缀multi_无非就是同意键值反复而已。
此外,
OK,接下来,请看本文第二部分、处理海量数据问题之六把密匙。
详细而论,则是: “首先是这一天,并且是訪问百度的日志中的IP取出来,逐个写入到一个大文件里。注意到IP是32位的,最多有个2^32个IP。同样能够採用映射的方法,比方%1000,把整个大文件映射为1000个小文件,再找出每一个小文中出现频率最大的IP(能够採用hash_map对那1000个文件里的全部IP进行频率统计,然后依次找出各个文件里频率最大的那个IP)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。”--十道海量数据处理面试题与十个方法大总结。
关于本题,还有几个问题,例如以下:
1、Hash取模是一种等价映射,不会存在同一个元素分散到不同小文件里的情况,即这里採用的是mod1000算法,那么同样的IP在hash取模后,仅仅可能落在同一个文件里,不可能被分散的。由于假设两个IP相等,那么经过Hash(IP)之后的哈希值是同样的,将此哈希值取模(如模1000),必然仍然相等。
2、那究竟什么是hash映射呢?简单来说,就是为了便于计算机在有限的内存中处理big数据,从而通过一种映射散列的方式让数据均匀分布在相应的内存位置(如大数据通过取余的方式映射成小树存放在内存中,或大文件映射成多个小文件),而这个映射散列方式便是我们通常所说的hash函数,设计的好的hash函数能让数据均匀分布而降低冲突。尽管数据映射到了另外一些不同的位置,但数据还是原来的数据,仅仅是取代和表示这些原始数据的形式发生了变化而已。
OK,有兴趣的,还能够再了解下一致性hash算法,见blog内此文第五部分:http://blog.csdn.net/v_july_v/article/details/6879101。
2、寻找热门查询,300万个查询字符串中统计最热门的10个查询
原题:搜索引擎会通过日志文件把用户每次检索使用的全部检索串都记录下来,每一个查询串的长度为1-255字节。假设眼下有一千万个记录(这些查询串的反复度比較高,尽管总数是1千万,但假设除去反复后,不超过3百万个。一个查询串的反复度越高,说明查询它的用户越多,也就是越热门),请你统计最热门的10个查询串,要求使用的内存不能超过1G。
解答:由上面第1题,我们知道,数据大则划为小的,如如一亿个Ip求Top 10,可先%1000将ip分到1000个小文件里去,并保证一种ip仅仅出如今一个文件里,再对每一个小文件里的ip进行hashmap计数统计并按数量排序,最后归并或者最小堆依次处理每一个小文件的top10以得到最后的结。
但假设数据规模比較小,能一次性装入内存呢?比方这第2题,尽管有一千万个Query,可是由于反复度比較高,因此事实上仅仅有300万的Query,每一个Query255Byte,因此我们能够考虑把他们都放进内存中去(300万个字符串假设没有反复,都是最大长度,那么最多占用内存3M*1K/4=0.75G。所以能够将全部字符串都存放在内存中进行处理),而如今仅仅是须要一个合适的数据结构,在这里,HashTable绝对是我们优先的选择。
所以我们放弃分而治之/hash映射的步骤,直接上hash统计,然后排序。So,针对此类典型的TOP K问题,採取的对策往往是:hashmap + 堆。例如以下所看到的:
别忘了这篇文章中所述的堆排序思路:“维护k个元素的最小堆,即用容量为k的最小堆存储最先遍历到的k个数,并假设它们即是最大的k个数,建堆费时O(k),并调整堆(费时O(logk))后,有k1>k2>...kmin(kmin设为小顶堆中最小元素)。继续遍历数列,每次遍历一个元素x,与堆顶元素比較,若x>kmin,则更新堆(x入堆,用时logk),否则不更新堆。这样下来,总费时O(k*logk+(n-k)*logk)=O(n*logk)。此方法得益于在堆中,查找等各项操作时间复杂度均为logk。”--第三章续、Top K算法问题的实现。
当然,你也能够採用trie树,keyword域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。
3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存大小限制是1M。返回频数最高的100个词。
由上面那两个例题,分而治之 + hash统计 + 堆/高速排序这个套路,我们已经開始有了屡试不爽的感觉。以下,再拿几道再多多验证下。请看此第3题:又是文件非常大,又是内存受限,咋办?还能怎么办呢?无非还是:
方案1:直接上:
方案3:与方案1相似,但在做完hash,分成多个文件后,能够交给多个文件来处理,採用分布式的架构来处理(比方MapReduce),最后再进行合并。
6、 给定a、b两个文件,各存放50亿个url,每一个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?
能够预计每一个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其全然载入到内存中处理。考虑採取分而治之的方法。
OK,此第一种方法:分而治之/hash映射 + hash统计 + 堆/高速/归并排序,再看最后4道题,例如以下:
7、怎么在海量数据中找出反复次数最多的一个?
方案:先做hash,然后求模映射为小文件,求出每一个小文件里反复次数最多的一个,并记录反复次数。然后找出上一步求出的数据中反复次数最多的一个就是所求(详细參考前面的题)。
8、上千万或上亿数据(有反复),统计当中出现次数最多的前N个数据。
方案:上千万或上亿的数据,如今的机器的内存应该能存下。所以考虑採用hash_map/搜索二叉树/红黑树等来进行统计次数。然后利用堆取出前N个出现次数最多的数据。
9、一个文本文件,大约有一万行,每行一个词,要求统计出当中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。
方案1:假设文件比較大,无法一次性读入内存,能够採用hash取模的方法,将大文件分解为多个小文件,对于单个小文件利用hash_map统计出每一个小文件里10个最常出现的词,然后再进行归并处理,找出终于的10个最常出现的词。10. 1000万字符串,当中有些是反复的,须要把反复的全部去掉,保留没有反复的字符串。请怎么设计和实现?
或者小数据量时用map,构造快,大数据量时用hash_map?
rbtree PK hashtable
据朋友№邦卡猫№的做的红黑树和hash table的性能測试中发现:当数据量基本上int型key时,hash table是rbtree的3-4倍,但hash table通常会浪费大概一半内存。
由于hash table所做的运算就是个%,而rbtree要比較非常多,比方rbtree要看value的数据 ,每一个节点要多出3个指针(或者偏移量) 假设须要其它功能,比方,统计某个范围内的key的数量,就须要加一个计数成员。
接下来,咱们来看另外一种方法,双层捅划分。
多层划分----事实上本质上还是分而治之的思想,重在“分”的技巧上!
适用范围:第k大,中位数,不反复或反复的数字
基本原理及要点:由于元素范围非常大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个能够接受的范围内进行。
问题实例:
13、2.5亿个整数中找出不反复的整数的个数,内存空间不足以容纳这2.5亿个整数。
有点像鸽巢原理,整数个数为2^32,也就是,我们能够将这2^32个数,划分为2^8个区域(比方用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就能够直接攻克了。也就是说仅仅要有足够的磁盘空间,就能够非常方便的解决。
14、5亿个int找它们的中位数。
关于什么是Bloom filter,请參看blog内此文:
适用范围:能够用来实现数据字典,进行数据的判重,或者集合求交集Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF採用counter中的最小值来近似表示元素的出现频率。
能够看下上文中的第6题:
“6、给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。假设是三个乃至n个文件呢?
依据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,假设按出错率0.01算须要的大概是650亿个bit。如今可用的是340亿,相差并不多,这样可能会使出错率上升些。另外假设这些urlip是一一相应的,就能够转换成ip,则大大简单了。
同一时候,上文的第5题:给定a、b两个文件,各存放50亿个url,每一个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?假设同意有一定的错误率,能够使用Bloom filter,4G内存大概能够表示340亿bit。将当中一个文件里的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,假设是,那么该url应该是共同的url(注意会有一定的错误率)。”
以下关于Bitmap的应用,能够看下上文中的第13题,以及另外一道新题:
“13、在2.5亿个整数中找出不反复的整数,注,内存不足以容纳这2.5亿个整数。
方案1:採用2-Bitmap(每一个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还能够接受。然后扫描这2.5亿个整数,查看Bitmap中相相应位,假设是00变01,01变10,10保持不变。所描完事后,查看bitmap,把相应位是01的整数输出就可以。
方案2:也可採用与第1题相似的方法,进行划分小文件的方法。然后在小文件里找出不反复的整数,并排序。然后再进行归并,注意去除反复的元素。”
15、给40亿个不反复的unsigned int的整数,没排过序的,然后再给一个数,怎样高速推断这个数是否在那40亿个数当中?
方案1:frome oo,用位图/Bitmap的方法,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。
Trie树
适用范围:数据量大,反复多,可是数据种类小能够放入内存
基本原理及要点:实现方式,节点孩子的表示方式
扩展:压缩实现。
问题实例:
很多其它有关Trie树的介绍,请參见此文:从Trie树(字典树)谈到后缀树。
数据库索引
适用范围:大数据量的增删改查
基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
倒排索引(Inverted index)
适用范围:搜索引擎,keyword查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。
以英文为例,以下是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我们就能得到以下的反向文件索引:
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
检索的条件"what","is"和"it"将相应集合的交集。
正向索引开发出来用来存储每一个文档的单词的列表。正向索引的查询往往满足每一个文档有序频繁的全文查询和每一个单词在校验文档中的验证这种查询。在正向索引中,文档占领了中心的位置,每一个文档指向了一个它所包括的索引项的序列。也就是说文档指向了它包括的那些单词,而反向索引则是单词指向了包括它的文档,非常easy看到这个反向的关系。
扩展:
问题实例:文档检索系统,查询那些文件包括了某单词,比方常见的学术论文的keyword搜索。
关于倒排索引的应用,很多其它请參见:
适用范围:大数据的排序,去重
基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树
问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存大小限制是1M。返回频数最高的100个词。
这个数据具有非常明显的特点,词的大小为16个字节,可是内存仅仅有1M做hash明显不够,所以能够用来排序。内存能够当输入缓冲区使用。
关于多路归并算法及外排序的详细应用场景,请參见blog内此文:
MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)运行,然后再将结果合并成终于结果(REDUCE)。这样做的优点是能够在任务被分解后,能够通过大量机器进行并行计算,降低整个操作的时间。但假设你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个归并排序。
适用范围:数据量大,可是数据种类小能够放入内存
基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。
问题实例:
很多其它详细阐述请參见blog内:
操作系统中的方法,先生成4G的地址表,在把这个表划分为小的4M的小文件做个索引,二级索引。30位前十位表示第几个4M文件,后20位表示在这个4M文件的第几个,等等,基于key value来设计存储,用key来建索引。
但假设如今仅仅有10000个数,然后怎么去随机从这一万个数里面随机取100个数?请读者思考。很多其它海里数据处理面试题,请參见此文第一部分:http://blog.csdn.net/v_july_v/article/details/6685962。