Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:
给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,
· 数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;
·
以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] =Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;
· 为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。
可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).
首先介绍一下松弛计算。如下图:
松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现一下情况
则不会修改点B的值,因为3+4>6。
Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则应为无法收敛而导致不能求出最短路径。
考虑如下的图:
经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)
第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。
在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如
此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。
所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。
poj3259
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int N = 10010; const int INF = 999999; struct Edge { int u; int v; int t; } ; Edge edge[N]; int num; int n,m,w; int dis[N] ; bool Bellman_ford() { for(int i = 1; i <= n; i ++) { dis[i] = INF; } bool flag ; for(int i = 1; i < n; i++) { flag = false; for(int j = 1; j <= num; j++) { if(dis[edge[j].v] > dis[edge[j].u] + edge[j].t) { dis[ edge[j].v ] = dis[edge[j].u] + edge[j].t; flag = true; } } if( !flag ) break; } for(int j = 1; j <= num; j++) if(dis[ edge[j].v ] > dis[edge[j].u] + edge[j].t) return true; return false; } int main() { int F,a,b,c; int tt; cin >> F; while(F--) { cin >> n >> m >> w; num = 0; memset(edge,0,sizeof(edge)); for(int i = 1; i <= m; i++) { cin >>a >> b >>c; num ++; //无向图 edge[num].t = c; edge[num].u = a; edge[num].v = b; num ++; edge[num].t = c; edge[num].u = b; edge[num].v = a; } for(int i = 1; i <= w; i++) { cin >> a >> b >> tt; edge[++num].t = -tt; edge[num].u = a; edge[num].v = b; } if( Bellman_ford() ) cout << "YES\n"; else cout << "NO"<<endl; } return 0; }