Day2:T3DP(基于排列组合思想)

T3:DP(基于排列组合思想的状态转移)

其实之前写排列组合的题目有一种很茫然的感觉....

应该是因为之前没有刷过所以没有什么体会

上次刷的vj1060有用到,但是写状态转移还是第一次学习吧

 ccy大神的题解如果认真去思考的话很容易看懂...感觉他写得太详细了,以至于自己都不想自己敲题解了

附上代码和注释再说说自己的感受吧:

1先判断出这个序列是否可行,不可行就输出无解,若可行那么做步骤2,3计算。



2递推出有i个灯时的所有状态数(无论可行不可行)状态表示:f[i,j,k]:表示i个灯,绿,红灯的奇偶性为j,k时的所有状态数。奇为0,偶为1

          f[i,0,0] = f[i-1,1,0]+f[i-1,0,1]+f[i-1,0,0];

          f[i,0,1] = f[i-1,1,1]+f[i-1,0,0]+f[i-1,0,1];

        以此类推.......(不要害怕我会给大家详细解释)

3根据现有的序列按字典序累加答案。



然后我给大家解释一下吧

其状态可以说是明白的

f[i,j,k]就和他说的那样表示i个灯,j表示绿灯的个数的奇偶性,k是红灯的个数的奇偶性

(其中0 表示x灯的个数为奇数,1表示x灯的个数为偶数)

大家不要着急看程序:看我给诸位推一推边界(这些都是很有用的);

先讨论一个灯的时候

我们有

f[1,0,0]=0;表示灯的个数为1,绿灯的个数为奇数,红灯的个数也为奇数的状态,当然这是可能的,因为有了一个绿灯那么另外一个就不是奇数了,也就是说无论如何都不可能在1的时候出现这种情况,所以赋值为0表示这种情况的方案数为0

f[1,1,0]=1;表示灯的个数为1,绿灯的个数为偶数,红灯的个数为奇数,这时候有一种情况就是一个灯,而这个灯是红灯(奇数),这时绿灯的个数为0(奇数);

f[1,0,1]=1;表示灯的个数为1,绿灯的个数为奇数,红灯的个数为偶数,这时候有一种情况就是绿灯有一个(奇数),红灯为0(偶数);

f[1,1,1]=1;表示灯的个数为1,绿灯的个数为偶数,红灯的个数为偶数,这时候有一种情况就是这灯是黄色的;这样红灯和绿灯的个数都为0(偶数)



接下来开始讨论两个灯的时候

首先按照方程的第一和第二行,我们有

f[2,0,0]:=f[1,1,0]+f[1,0,1]+f[1,0,0]             ······④

即两个灯,绿灯的个数为奇数,红灯的个数为奇数的方案数

其会等于一个灯的情况:(我按照顺序给出一个灯的情况)

①Red即f[1,1,0]要达到f[2,0,0]只需要变成Red,Red即可即两个红灯

②Green即f[1,0,1]要达到f[2,0,0]只需要变成green,green即可即两个绿灯

③这个起到的是递推作用,虽然现在f[1,0,0]是0,但是f[2,0,0]明细不是0了

那么假如我们现在是在推第3个那么f[3,0,0]:=f[2,1,0]+f[2,0,1]+f[2,0,0]的情况了这个时候f[2,0,0]是两个等都是奇数的情况,

此时加上一个yellow就变成f[3,0,0]了而且也只能这样,这样就更证明了方程的正确性,对于前面的①和②也是如此,都可以证明这种状态只能从那种状态转移过来

剩下的三个方程将在程序中给出,其方程都可以由自己推出;

目的是为了将f[2,0,1],f[2,1,0],f[2,1,1]都得推出来。以及f[n,....]



好了我们切入算法部分

初始时ans:=1;//我们要找的是比它的序列先的序列.所以找到的序列数应该加一

对于样例

RGYR

我们要从字典序出发G->R->Y;

好的

R前面有G

那么我们转化成

R???的形式

很显然我们要加入一个灯数为3的xxx(未知排列)

这个排列应该满足整个序列仍然满足绿奇、红偶.

那么ans就应该加上f[3,0,0]表示加入一个绿灯为奇数的,红灯为奇数的序列(长度为3)

因为序列中已知部分只有R一个(R是奇数,但是其要偶数,红偶);所以要加上一个奇数(奇数+奇数=偶数)

而已知部分中G为0个,所以要加上一个奇数(偶数+奇数=奇数,绿奇);

然后G就没有了,它的下一个就是R了

然后是RG???,对于G来说它的字典序是最小的所以跳过

然后是RGY?,对于Y来说它的字典序前面还有R和G

那么先讨论G的情况(当然这两个情况可以同时讨论)

RGG?->因为G(绿)为偶数,而绿要奇数,所以加上f[1,0,y],y是什么呢?相信大家都会了,思考一下吧

然后是

RGR?->因为这是G是奇数所以加上偶数,即加上f[1,1,y],y还是由读者思考

 

var

  i,j,n,a,b,g,r:longint;

  ans:int64;

  f:array[0..100001,0..1,0..1]of longint;

  s:ansistring;



procedure go_1;

begin

  g:=g+1;

  if (odd(g)) and (not odd(r)) then//根据g和r的奇偶性处理相应问题

    ans:=(ans+f[n-i,1,1]) mod 12345;

  if (odd(g)) and (odd(r)) then

    ans:=(ans+f[n-i,1,0]) mod 12345;

  if (not odd(g)) and (not odd(r)) then

    ans:=(ans+f[n-i,0,1]) mod 12345;

  if (not odd(g)) and (odd(r)) then

    ans:=(ans+f[n-i,0,0]) mod 12345;

  g:=g-1;//用完g后要注意删掉

end;



begin

   readln(n);

   readln(s);

   fillchar(f,sizeof(f),0);

   f[1,0,1]:=1;

   f[1,1,1]:=1;

   f[1,1,0]:=1;

   f[1,0,0]:=0;

   for i:=2 to n do

     begin

       f[i,0,0]:=(f[i-1,0,0]+f[i-1,0,1]+f[i-1,1,0])mod 12345;

       f[i,0,1]:=(f[i-1,0,1]+f[i-1,1,1]+f[i-1,0,0])mod 12345;

       f[i,1,0]:=(f[i-1,0,0]+f[i-1,1,0]+f[i-1,1,1])mod 12345;

       f[i,1,1]:=(f[i-1,1,1]+f[i-1,1,0]+f[i-1,0,1])mod 12345;//这是另外4个递推式 要注意mod

     end;

   ans:=1;//一开始ans=1具体为什么我上面有解释

   g:=0;r:=0;

   for i:=1 to n do

       case s[i] of

         'G':inc(g);//字典序是最小的了所以不需要处理,直接增加g的数目

         'R':begin

               go_1;//go_1是处理G的情况 因为R前面的字典序只有一个所以只要处理一个

               inc(r);//r的数目加1

             end;

         'Y':begin

               go_1;//先处理G的情况 因为Y的字典序前面有G,R,所以还要处理R

               inc(r);//inc(R)用完之后要注意减掉

               if (odd(g)) and (odd(r)) then//这是根据当前g和r的数目做我上所述的相应操作

                 ans:=(ans+f[n-i,1,0]) mod 12345;

               if (odd(g)) and (not odd(r)) then

                 ans:=(ans+f[n-i,1,1]) mod 12345;

               if (not odd(g)) and (not odd(r)) then

                 ans:=(ans+f[n-i,0,1]) mod 12345;

               if (not odd(g)) and (odd(r)) then

                 ans:=(ans+f[n-i,0,0]) mod 12345;

               dec(r);

             end;

       end;

  if not odd(g) or odd(r) then writeln('invalid') else//如果不满足要求输出无解信息,否则输出ans

  writeln(ans);

end.

 

1.像g++,然后讨论完之后g--,这样的操作,前者是用来判断之后是加上奇或偶,而为什么要再减一呢?别忘了g是用来统计green的个数的,要用来判断输入样例是否合法,当然要使g的个数不变了;

2.感觉最重要的是要有排列组合的思想,推出边界条件很重要,推出状态转移方程很重要;

3.在计算f的时候要记得mod 12345

 

 

你可能感兴趣的:(dp)