mysql优化相关

一、优化概述

二、查询与索引优化分析

1性能瓶颈定位

Show命令

慢查询日志

explain分析查询

profiling分析查询

 

2索引及查询优化

三、配置优化

1)      max_connections

2)      back_log

3)      interactive_timeout

4)      key_buffer_size

5)      query_cache_size

6)      record_buffer_size

7)      read_rnd_buffer_size

8)      sort_buffer_size

9)      join_buffer_size

10)    table_cache

11)    max_heap_table_size

12)    tmp_table_size

13)    thread_cache_size

14)    thread_concurrency

15)    wait_timeout

 

一、 优化概述

mysql优化相关_第1张图片

MySQL数据库是常见的两个瓶颈是CPU和I/O的瓶颈,CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候。磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在网络上,那么查询量相当大的时候那么平瓶颈就会出现在网络上,我们可以用mpstat, iostat, sar和vmstat来查看系统的性能状态。

除了服务器硬件的性能瓶颈,对于MySQL系统本身,我们可以使用工具来优化数据库的性能,通常有三种:使用索引,使用EXPLAIN分析查询以及调整MySQL的内部配置。

二、查询与索引优化分析

在优化MySQL时,通常需要对数据库进行分析,常见的分析手段有慢查询日志,EXPLAIN 分析查询,profiling分析以及show命令查询系统状态及系统变量,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能。

1 性能瓶颈定位

Show命令

我们可以通过show命令查看MySQL状态及变量,找到系统的瓶颈:

Mysql> show status ——显示状态信息(扩展show status like ‘XXX’)

Mysql> show variables ——显示系统变量(扩展show variables like ‘XXX’)

Mysql> show innodb status ——显示InnoDB存储引擎的状态

Mysql> show processlist ——查看当前SQL执行,包括执行状态、是否锁表等

Shell> mysqladmin variables -u username -p password——显示系统变量

Shell> mysqladmin extended-status -u username -p password——显示状态信息

查看状态变量及帮助:

Shell> mysqld –verbose –help [|more #逐行显示]

 

比较全的Show命令的使用可参考: http://blog.phpbean.com/a.cn/18/

慢查询日志

慢查询日志开启:

在配置文件my.cnf或my.ini中在[mysqld]一行下面加入两个配置参数

log-slow-queries=/data/mysqldata/slow-query.log           

long_query_time=2                                                                 

注:log-slow-queries参数为慢查询日志存放的位置,一般这个目录要有mysql的运行帐号的可写权限,一般都将这个目录设置为mysql的数据存放目录;

long_query_time=2中的2表示查询超过两秒才记录;

在my.cnf或者my.ini中添加log-queries-not-using-indexes参数,表示记录下没有使用索引的查询。

log-slow-queries=/data/mysqldata/slow-query.log           

long_query_time=10                                                               

log-queries-not-using-indexes                                             

慢查询日志开启方法二:

我们可以通过命令行设置变量来即时启动慢日志查询。由下图可知慢日志没有打开,slow_launch_time=# 表示如果建立线程花费了比这个值更长的时间,slow_launch_threads 计数器将增加

mysql优化相关_第2张图片

设置慢日志开启

mysql优化相关_第3张图片

MySQL后可以查询long_query_time 的值 。

mysql优化相关_第4张图片

 

为了方便测试,可以将修改慢查询时间为5秒。

mysql优化相关_第5张图片

慢查询分析mysqldumpslow

我们可以通过打开log文件查看得知哪些SQL执行效率低下

[root@localhost mysql]# more slow-query.log                            

# Time: 081026 19:46:34                                                                          

# User@Host : root[root] @ localhost []                                                           

# Query_time: 11 Lock_time: 0 Rows_sent: 1 Rows_examined: 6552961        

select count(*) from t_user;                                                                                

从日志中,可以发现查询时间超过5 秒的SQL,而小于5秒的没有出现在此日志中。

如果慢查询日志中记录内容很多,可以使用mysqldumpslow工具(MySQL客户端安装自带)来对慢查询日志进行分类汇总。mysqldumpslow对日志文件进行了分类汇总,显示汇总后摘要结果。

进入log的存放目录,运行

[root@mysql_data]#mysqldumpslow  slow-query.log                                 

Reading mysql slow query log from slow-query.log                            

Count: 2 Time=11.00s (22s) Lock=0.00s (0s) Rows=1.0 (2), root[root]@mysql    

select count(N) from t_user;                                                

mysqldumpslow命令

/path/mysqldumpslow -s c -t 10 /database/mysql/slow-query.log                      

这会输出记录次数最多的10条SQL语句,其中:

-s, 是表示按照何种方式排序,c、t、l、r分别是按照记录次数、时间、查询时间、返回的记录数来排序,ac、at、al、ar,表示相应的倒叙;

-t, 是top n的意思,即为返回前面多少条的数据;

-g, 后边可以写一个正则匹配模式,大小写不敏感的;

例如:

/path/mysqldumpslow -s r -t 10 /database/mysql/slow-log                                 

得到返回记录集最多的10个查询。

/path/mysqldumpslow -s t -t 10 -g “left join” /database/mysql/slow-log       

得到按照时间排序的前10条里面含有左连接的查询语句。

使用mysqldumpslow命令可以非常明确的得到各种我们需要的查询语句,对MySQL查询语句的监控、分析、优化是MySQL优化非常重要的一步。开启慢查询日志后,由于日志记录操作,在一定程度上会占用CPU资源影响mysql的性能,但是可以阶段性开启来定位性能瓶颈。

explain分析查询

使用 EXPLAIN 关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。通过explain命令可以得到:

– 表的读取顺序

– 数据读取操作的操作类型

– 哪些索引可以使用

– 哪些索引被实际使用

– 表之间的引用

– 每张表有多少行被优化器查询

mysql优化相关_第6张图片

EXPLAIN字段:

ØTable:显示这一行的数据是关于哪张表的

Øpossible_keys:显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从WHERE语句中选择一个合适的语句

Økey:实际使用的索引。如果为NULL,则没有使用索引。MYSQL很少会选择优化不足的索引,此时可以在SELECT语句中使用USE INDEX(index)来强制使用一个索引或者用IGNORE INDEX(index)来强制忽略索引

Økey_len:使用的索引的长度。在不损失精确性的情况下,长度越短越好

Øref:显示索引的哪一列被使用了,如果可能的话,是一个常数

Ørows:MySQL认为必须检索的用来返回请求数据的行数

Øtype:这是最重要的字段之一,显示查询使用了何种类型。从最好到最差的连接类型为system、const、eq_reg、ref、range、index和ALL

nsystem、const:可以将查询的变量转为常量.  如id=1; id为 主键或唯一键.

neq_ref:访问索引,返回某单一行的数据.(通常在联接时出现,查询使用的索引为主键或惟一键)

nref:访问索引,返回某个值的数据.(可以返回多行) 通常使用=时发生

nrange:这个连接类型使用索引返回一个范围中的行,比如使用>或<查找东西,并且该字段上建有索引时发生的情况(注:不一定好于index)

nindex:以索引的顺序进行全表扫描,优点是不用排序,缺点是还要全表扫描

nALL:全表扫描,应该尽量避免

ØExtra:关于MYSQL如何解析查询的额外信息,主要有以下几种

nusing index:只用到索引,可以避免访问表. 

nusing where:使用到where来过虑数据. 不是所有的where clause都要显示using where. 如以=方式访问索引.

nusing tmporary:用到临时表

nusing filesort:用到额外的排序. (当使用order by v1,而没用到索引时,就会使用额外的排序)

nrange checked for eache record(index map:N):没有好的索引.

mysql优化相关_第7张图片

 

profiling分析查询

通过慢日志查询可以知道哪些SQL语句执行效率低下,通过explain我们可以得知SQL语句的具体执行情况,索引使用等,还可以结合show命令查看执行状态。

如果觉得explain的信息不够详细,可以同通过profiling命令得到更准确的SQL执行消耗系统资源的信息。

profiling默认是关闭的。可以通过以下语句查看

 mysql优化相关_第8张图片

 

打开功能: mysql>set profiling=1; 执行需要测试的sql 语句:

mysql优化相关_第9张图片

mysql> show profiles\G; 可以得到被执行的SQL语句的时间和ID

mysql>show profile for query 1; 得到对应SQL语句执行的详细信息

Show Profile命令格式:

SHOW PROFILE [type [, type] … ]                                    

    [FOR QUERY n]                                                            

    [LIMIT row_count [OFFSET offset]]                             

type:                                                                                  

    ALL                                                                               

  | BLOCK IO                                                                      

  | CONTEXT SWITCHES                                                   

  | CPU                                                                              

  | IPC                                                                                

  | MEMORY                                                                            

  | PAGE FAULTS                                                               

  | SOURCE                                                                        

  | SWAPS                

 

 

 

 

以上的16rows是针对非常简单的select语句的资源信息,对于较复杂的SQL语句,会有更多的行和字段,比如converting HEAP to MyISAM 、Copying to tmp table等等,由于以上的SQL语句不存在复杂的表操作,所以未显示这些字段。通过profiling资源耗费信息,我们可以采取针对性的优化措施。

 

测试完毕以后 ,关闭参数:mysql> set profiling=0

 

 

2     索引及查询优化

 

索引的类型

Ø 普通索引:这是最基本的索引类型,没唯一性之类的限制。

Ø 唯一性索引:和普通索引基本相同,但所有的索引列值保持唯一性。

Ø 主键:主键是一种唯一索引,但必须指定为”PRIMARY KEY”。

Ø 全文索引:MYSQL从3.23.23开始支持全文索引和全文检索。在MYSQL中,全文索引的索引类型为FULLTEXT。全文索引可以在VARCHAR或者TEXT类型的列上创建。

大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)使用B树中存储。空间列类型的索引使用R-树,MEMORY表支持hash索引。

单列索引和多列索引(复合索引)

索引可以是单列索引,也可以是多列索引。对相关的列使用索引是提高SELECT操作性能的最佳途径之一。

多列索引:

MySQL可以为多个列创建索引。一个索引可以包括15个列。对于某些列类型,可以索引列的左前缀,列的顺序非常重要。

多列索引可以视为包含通过连接索引列的值而创建的值的排序的数组。一般来说,即使是限制最严格的单列索引,它的限制能力也远远低于多列索引。

最左前缀

多列索引有一个特点,即最左前缀(Leftmost Prefixing)。假如有一个多列索引为key(firstname lastname age),当搜索条件是以下各种列的组合和顺序时,MySQL将使用该多列索引:

firstname,lastname,age

firstname,lastname

firstname

也就是说,相当于还建立了key(firstname lastname)和key(firstname)。

索引主要用于下面的操作:

Ø 快速找出匹配一个WHERE子句的行。

Ø 删除行。当执行联接时,从其它表检索行。

Ø 对具体有索引的列key_col找出MAX()或MIN()值。由预处理器进行优化,检查是否对索引中在key_col之前发生所有关键字元素使用了WHERE key_part_# = constant。在这种情况下,MySQL为每个MIN()或MAX()表达式执行一次关键字查找,并用常数替换它。如果所有表达式替换为常量,查询立即返回。例如:

SELECT MIN(key2), MAX (key2)  FROM tb WHERE key1=10;

Ø 如果对一个可用关键字的最左面的前缀进行了排序或分组(例如,ORDER BY key_part_1,key_part_2),排序或分组一个表。如果所有关键字元素后面有DESC,关键字以倒序被读取。

Ø 在一些情况中,可以对一个查询进行优化以便不用查询数据行即可以检索值。如果查询只使用来自某个表的数字型并且构成某些关键字的最左面前缀的列,为了更快,可以从索引树检索出值。

SELECT key_part3 FROM tb WHERE key_part1=1

有时MySQL不使用索引,即使有可用的索引。一种情形是当优化器估计到使用索引将需要MySQL访问表中的大部分行时。(在这种情况下,表扫描可能会更快些)。然而,如果此类查询使用LIMIT只搜索部分行,MySQL则使用索引,因为它可以更快地找到几行并在结果中返回。例如:

mysql优化相关_第10张图片

 

合理的建立索引的建议:

(1)  越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。 

(2)  简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。

(3)  尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值

 

这部分是关于索引和写SQL语句时应当注意的一些琐碎建议和注意点。

1. 当结果集只有一行数据时使用LIMIT 1

2. 避免SELECT *,始终指定你需要的列

从表中读取越多的数据,查询会变得更慢。他增加了磁盘需要操作的时间,还是在数据库服务器与WEB服务器是独立分开的情况下。你将会经历非常漫长的网络延迟,仅仅是因为数据不必要的在服务器之间传输。

3. 使用连接(JOIN)来代替子查询(Sub-Queries)

       连接(JOIN).. 之所以更有效率一些,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。

4. 使用ENUMCHAR 而不是VARCHAR,使用合理的字段属性长度

5. 尽可能的使用NOT NULL

6. 固定长度的表会更快

7. 拆分大的DELETE INSERT 语句

8. 查询的列越小越快

 

 Where条件

在查询中,WHERE条件也是一个比较重要的因素,尽量少并且是合理的where条件是很重要的,尽量在多个条件的时候,把会提取尽量少数据量的条件放在前面,减少后一个where条件的查询时间。

有些where条件会导致索引无效:

Ø where子句的查询条件里有!=,MySQL将无法使用索引。

Ø where子句使用了Mysql函数的时候,索引将无效,比如:select * from tb where left(name, 4) = ‘xxx’

Ø 使用LIKE进行搜索匹配的时候,这样索引是有效的:select * from tbl1 where name like ‘xxx%’,而like ‘%xxx%’ 时索引无效

 

三、    配置优化

安装MySQL后,配置文件my.cnf在 /MySQL安装目录/share/mysql目录中,该目录中还包含多个配置文件可供参考,有my-large.cnf ,my-huge.cnf,  my-medium.cnf,my-small.cnf,分别对应大中小型数据库应用的配置。win环境下即存在于MySQL安装目录中的.ini文件。

 

下面列出了对性能优化影响较大的主要变量,主要分为连接请求的变量和缓冲区变量。

1.   连接请求的变量:

1)     max_connections

MySQL的最大连接数,增加该值增加mysqld 要求的文件描述符的数量。如果服务器的并发连接请求量比较大,建议调高此值,以增加并行连接数量,当然这建立在机器能支撑的情况下,因为如果连接数越多,介于MySQL会为每个连接提供连接缓冲区,就会开销越多的内存,所以要适当调整该值,不能盲目提高设值。

数值过小会经常出现ERROR 1040: Too many connections错误,可以过’conn%’通配符查看当前状态的连接数量,以定夺该值的大小。

show variables like ‘max_connections’ 最大连接数

show  status like ‘max_used_connections’响应的连接数

如下:

mysql> show variables like ‘max_connections‘;

+———————–+——-+

| Variable_name | Value |

+———————–+——-+

| max_connections | 256  |

+———————–+——-+

mysql> show status like ‘max%connections‘;

+———————–+——-+

| Variable_name       | Value |

+—————————-+——-+

| max_used_connections | 256|

+—————————-+——-+

max_used_connections / max_connections * 100% (理想值≈ 85%) 

如果max_used_connections跟max_connections相同 那么就是max_connections设置过低或者超过服务器负载上限了,低于10%则设置过大。

2)     back_log

MySQL能暂存的连接数量。当主要MySQL线程在一个很短时间内得到非常多的连接请求,这就起作用。如果MySQL的连接数据达到max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源。

back_log值指出在MySQL暂时停止回答新请求之前的短时间内有多少个请求可以被存在堆栈中。只有如果期望在一个短时间内有很多连接,你需要增加它,换句话说,这值对到来的TCP/IP连接的侦听队列的大小。

当观察你主机进程列表(mysql> show full processlist),发现大量264084 | unauthenticated user | xxx.xxx.xxx.xxx | NULL | Connect | NULL | login | NULL 的待连接进程时,就要加大back_log 的值了。

默认数值是50,可调优为128,对于Linux系统设置范围为小于512的整数。 

3)     interactive_timeout

一个交互连接在被服务器在关闭前等待行动的秒数。一个交互的客户被定义为对mysql_real_connect()使用CLIENT_INTERACTIVE 选项的客户。 

默认数值是28800,可调优为7200。 

2.   缓冲区变量

全局缓冲:

4)     key_buffer_size

key_buffer_size指定索引缓冲区的大小,它决定索引处理的速度,尤其是索引读的速度。通过检查状态值Key_read_requests和Key_reads,可以知道key_buffer_size设置是否合理。比例key_reads / key_read_requests应该尽可能的低,至少是1:100,1:1000更好(上述状态值可以使用SHOW STATUS LIKE ‘key_read%’获得)。

key_buffer_size只对MyISAM表起作用。即使你不使用MyISAM表,但是内部的临时磁盘表是MyISAM表,也要使用该值。可以使用检查状态值created_tmp_disk_tables得知详情。

举例如下:

mysql> show variables like ‘key_buffer_size‘;

+——————-+————+

| Variable_name | Value      |

+———————+————+

| key_buffer_size | 536870912 |

+———— ———-+————+

key_buffer_size为512MB,我们再看一下key_buffer_size的使用情况:

mysql> show global status like ‘key_read%‘;

+————————+————-+

| Variable_name   | Value    |

+————————+————-+

| Key_read_requests| 27813678764 |

| Key_reads   |  6798830      |

+————————+————-+

一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:

key_cache_miss_rate =Key_reads / Key_read_requests * 100%,设置在1/1000左右较好

默认配置数值是8388600(8M),主机有4GB内存,可以调优值为268435456(256MB)。

5)     query_cache_size

使用查询缓冲,MySQL将查询结果存放在缓冲区中,今后对于同样的SELECT语句(区分大小写),将直接从缓冲区中读取结果。

通过检查状态值Qcache_*,可以知道query_cache_size设置是否合理(上述状态值可以使用SHOW STATUS LIKE ‘Qcache%’获得)。如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况,如果Qcache_hits的值也非常大,则表明查询缓冲使用非常频繁,此时需要增加缓冲大小;如果Qcache_hits的值不大,则表明你的查询重复率很低,这种情况下使用查询缓冲反而会影响效率,那么可以考虑不用查询缓冲。此外,在SELECT语句中加入SQL_NO_CACHE可以明确表示不使用查询缓冲。

 

与查询缓冲有关的参数还有query_cache_type、query_cache_limit、query_cache_min_res_unit。

 

query_cache_type指定是否使用查询缓冲,可以设置为0、1、2,该变量是SESSION级的变量。

query_cache_limit指定单个查询能够使用的缓冲区大小,缺省为1M。

query_cache_min_res_unit是在4.1版本以后引入的,它指定分配缓冲区空间的最小单位,缺省为4K。检查状态值Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多,这就表明查询结果都比较小,此时需要减小query_cache_min_res_unit。

举例如下:

mysql> show global status like ‘qcache%‘;

+——————————-+—————–+

| Variable_name                  | Value        |

+——————————-+—————–+

| Qcache_free_blocks        | 22756       |

| Qcache_free_memory     | 76764704    |

| Qcache_hits           | 213028692 |

| Qcache_inserts         | 208894227   |

| Qcache_lowmem_prunes   | 4010916      |

| Qcache_not_cached | 13385031    |

| Qcache_queries_in_cache | 43560 |

| Qcache_total_blocks          | 111212      |

+——————————-+—————–+

mysql> show variables like ‘query_cache%‘;

+————————————–+————–+

| Variable_name            | Value      |

+————————————–+———–+

| query_cache_limit         | 2097152     |

| query_cache_min_res_unit      | 4096    |

| query_cache_size         | 203423744 |

| query_cache_type        | ON           |

| query_cache_wlock_invalidate | OFF   |

+————————————–+—————+

查询缓存碎片率= Qcache_free_blocks / Qcache_total_blocks * 100%

如果查询缓存碎片率超过20%,可以用FLUSH QUERY CACHE整理缓存碎片,或者试试减小query_cache_min_res_unit,如果你的查询都是小数据量的话。

查询缓存利用率= (query_cache_size – Qcache_free_memory) / query_cache_size * 100%

查询缓存利用率在25%以下的话说明query_cache_size设置的过大,可适当减小;查询缓存利用率在80%以上而且Qcache_lowmem_prunes > 50的话说明query_cache_size可能有点小,要不就是碎片太多。

查询缓存命中率= (Qcache_hits – Qcache_inserts) / Qcache_hits * 100%

示例服务器查询缓存碎片率=20.46%,查询缓存利用率=62.26%,查询缓存命中率=1.94%,命中率很差,可能写操作比较频繁吧,而且可能有些碎片。

每个连接的缓冲

6)    record_buffer_size

每个进行一个顺序扫描的线程为其扫描的每张表分配这个大小的一个缓冲区。如果你做很多顺序扫描,你可能想要增加该值。

默认数值是131072(128K),可改为16773120 (16M)

7)     read_rnd_buffer_size

随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySQL会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySQL会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大。

一般可设置为16M 

8)     sort_buffer_size

每个需要进行排序的线程分配该大小的一个缓冲区。增加这值加速ORDER BY或GROUP BY操作。

默认数值是2097144(2M),可改为16777208 (16M)。

9)     join_buffer_size

联合查询操作所能使用的缓冲区大小

record_buffer_size,read_rnd_buffer_size,sort_buffer_size,join_buffer_size为每个线程独占,也就是说,如果有100个线程连接,则占用为16M*100

10)  table_cache

表高速缓存的大小。每当MySQL访问一个表时,如果在表缓冲区中还有空间,该表就被打开并放入其中,这样可以更快地访问表内容。通过检查峰值时间的状态值Open_tablesOpened_tables,可以决定是否需要增加table_cache的值。如果你发现open_tables等于table_cache,并且opened_tables在不断增长,那么你就需要增加table_cache的值了(上述状态值可以使用SHOW STATUS LIKE ‘Open%tables’获得)。注意,不能盲目地把table_cache设置成很大的值。如果设置得太高,可能会造成文件描述符不足,从而造成性能不稳定或者连接失败。

1G内存机器,推荐值是128-256。内存在4GB左右的服务器该参数可设置为256M或384M。

11)  max_heap_table_size

用户可以创建的内存表(memory table)的大小。这个值用来计算内存表的最大行数值。这个变量支持动态改变,即set @max_heap_table_size=#

这个变量和tmp_table_size一起限制了内部内存表的大小。如果某个内部heap(堆积)表大小超过tmp_table_size,MySQL可以根据需要自动将内存中的heap表改为基于硬盘的MyISAM表。

12)  tmp_table_size

通过设置tmp_table_size选项来增加一张临时表的大小,例如做高级GROUP BY操作生成的临时表。如果调高该值,MySQL同时将增加heap表的大小,可达到提高联接查询速度的效果,建议尽量优化查询,要确保查询过程中生成的临时表在内存中,避免临时表过大导致生成基于硬盘的MyISAM表

mysql> show global status like ‘created_tmp%‘;

+——————————–+———+

| Variable_name             | Value |

+———————————-+———+

| Created_tmp_disk_tables | 21197  |

| Created_tmp_files   | 58  |

| Created_tmp_tables  | 1771587 |

+——————————–+———–+

每次创建临时表,Created_tmp_tables增加,如果临时表大小超过tmp_table_size,则是在磁盘上创建临时表,Created_tmp_disk_tables也增加,Created_tmp_files表示MySQL服务创建的临时文件文件数,比较理想的配置是:

Created_tmp_disk_tables / Created_tmp_tables * 100% <= 25%比如上面的服务器Created_tmp_disk_tables / Created_tmp_tables * 100% =1.20%,应该相当好了

默认为16M,可调到64-256最佳,线程独占,太大可能内存不够I/O堵塞

13)  thread_cache_size

可以复用的保存在中的线程的数量。如果有,新的线程从缓存中取得,当断开连接的时候如果有空间,客户的线置在缓存中。如果有很多新的线程,为了提高性能可以这个变量值。

通过比较 Connections和Threads_created状态的变量,可以看到这个变量的作用。

默认值为110,可调优为80。 

14)  thread_concurrency

推荐设置为服务器 CPU核数的2倍,例如双核的CPU, 那么thread_concurrency的应该为4;2个双核的cpu, thread_concurrency的值应为8。默认为8

15)  wait_timeout

指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。

 

3.    配置InnoDB的几个变量

innodb_buffer_pool_size

对于InnoDB表来说,innodb_buffer_pool_size的作用就相当于key_buffer_size对于MyISAM表的作用一样。InnoDB使用该参数指定大小的内存来缓冲数据和索引。对于单独的MySQL数据库服务器,最大可以把该值设置成物理内存的80%。

根据MySQL手册,对于2G内存的机器,推荐值是1G(50%)。

 

innodb_flush_log_at_trx_commit

主要控制了innodb将log buffer中的数据写入日志文件并flush磁盘的时间点,取值分别为0、1、2三个。0,表示当事务提交时,不做日志写入操作,而是每秒钟将log buffer中的数据写入日志文件并flush磁盘一次;1,则在每秒钟或是每次事物的提交都会引起日志文件写入、flush磁盘的操作,确保了事务的ACID;设置为2,每次事务提交引起写入日志文件的动作,但每秒钟完成一次flush磁盘操作。

实际测试发现,该值对插入数据的速度影响非常大,设置为2时插入10000条记录只需要2秒,设置为0时只需要1秒,而设置为1时则需要229秒。因此,MySQL手册也建议尽量将插入操作合并成一个事务,这样可以大幅提高速度。

根据MySQL手册,在允许丢失最近部分事务的危险的前提下,可以把该值设为0或2。

 

innodb_log_buffer_size

log缓存大小,一般为1-8M,默认为1M,对于较大的事务,可以增大缓存大小。

可设置为4M或8M。

 

innodb_additional_mem_pool_size

该参数指定InnoDB用来存储数据字典和其他内部数据结构的内存池大小。缺省值是1M。通常不用太大,只要够用就行,应该与表结构的复杂度有关系。如果不够用,MySQL会在错误日志中写入一条警告信息。

根据MySQL手册,对于2G内存的机器,推荐值是20M,可适当增加。

 

innodb_thread_concurrency=8

推荐设置为 2*(NumCPUs+NumDisks),默认一般为8

本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。

文章主要内容分为三个部分。

第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础。

第二部分结合MySQL数据库中MyISAM和InnoDB数据存储引擎中索引的架构实现讨论聚集索引、非聚集索引及覆盖索引等话题。

第三部分根据上面的理论基础,讨论MySQL中高性能使用索引的策略。

摘要 数据结构及算法基础  索引的本质 B-Tree和B+Tree

为什么使用B-Tree(B+Tree)

MySQL索引实现

MyISAM索引实现

InnoDB索引实现

索引使用策略及优化

示例数据库

最左前缀原理与相关优化

索引选择性与前缀索引

InnoDB的主键选择与插入优化

后记

参考文献

数据结构及算法基础

索引的本质

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。

我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引

看一个例子:

mysql优化相关_第11张图片

图1

图1展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。

虽然这是一个货真价实的索引,但是实际的数据库系统几乎没有使用二叉查找树或其进化品种红黑树(red-black tree)实现的,原因会在下文介绍。

B-Tree和B+Tree

目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从数据结构角度描述它们。

B-Tree

为了描述B-Tree,首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:

  1. d为大于1的一个正整数,称为B-Tree的度。
  2. h为一个正整数,称为B-Tree的高度。
  3. 每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。
  4. 每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null 。
  5. 所有叶节点具有相同的深度,等于树高h。
  6. key和指针互相间隔,节点两端是指针。
  7. 一个节点中的key从左到右非递减排列。
  8. 所有节点组成树结构。
  9. 每个指针要么为null,要么指向另外一个节点。
  10. 如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。
  11. 如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。
  12. 如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。

图2是一个d=2的B-Tree示意图。

mysql优化相关_第12张图片

图2

由于B-Tree的特性,在B-Tree中按key检索数据的算法非常直观:首先从根节点进行二分查找,如果找到则返回对应节点的data,否则对相应区间的指针指向的节点递归进行查找,直到找到节点或找到null指针,前者查找成功,后者查找失败。B-Tree上查找算法的伪代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
BTree_Search ( node , key )
{
     if ( node == null ) return null ;
 
     foreach ( node . key )
     {
         if ( node . key [ i ] == key ) return node . data [ i ] ;
         if ( node . key [ i ] & gt ; key ) return BTree_Search ( point [ i ] - & gt ; node ) ;
     }
 
     return BTree_Search ( point [ i + 1 ] - & gt ; node ) ;
}
 
data = BTree_Search ( root , my_key ) ;

关于B-Tree有一系列有趣的性质,例如一个度为d的B-Tree,设其索引N个key,则其树高h的上限为logd((N+1)/2),检索一个key,其查找节点个数的渐进复杂度为O(logdN)。从这点可以看出,B-Tree是一个非常有效率的索引数据结构。

另外,由于插入删除新的数据记录会破坏B-Tree的性质,因此在插入删除时,需要对树进行一个分裂、合并、转移等操作以保持B-Tree性质,本文不打算完整讨论B-Tree这些内容,因为已经有许多资料详细说明了B-Tree的数学性质及插入删除算法,有兴趣的朋友可以在本文末的参考文献一栏找到相应的资料进行阅读。

B+Tree

B-Tree有许多变种,其中最常见的是B+Tree,例如MySQL就普遍使用B+Tree实现其索引结构。

与B-Tree相比,B+Tree有以下不同点:

  1. 每个节点的指针上限为2d而不是2d+1。
  2. 内节点不存储data,只存储key;叶子节点不存储指针。

图3是一个简单的B+Tree示意。

mysql优化相关_第13张图片

图3

由于并不是所有节点都具有相同的域,因此B+Tree中叶节点和内节点一般大小不同。这点与B-Tree不同,虽然B-Tree中不同节点存放的key和指针可能数量不一致,但是每个节点的域和上限是一致的,所以在实现中B-Tree往往对每个节点申请同等大小的空间。

一般来说,B+Tree比B-Tree更适合实现外存储索引结构,具体原因与外存储器原理及计算机存取原理有关,将在下面讨论。

带有顺序访问指针的B+Tree

一般在数据库系统或文件系统中使用的B+Tree结构都在经典B+Tree的基础上进行了优化,增加了顺序访问指针。

mysql优化相关_第14张图片

图4

如图4所示,在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如图4中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。

这一节对B-Tree和B+Tree进行了一个简单的介绍,下一节结合存储器存取原理介绍为什么目前B+Tree是数据库系统实现索引的首选数据结构。

为什么使用B-Tree(B+Tree)

上文说过,红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构,这一节将结合计算机组成原理相关知识讨论B-/+Tree作为索引的理论基础。

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。

主存存取原理

目前计算机使用的主存基本都是随机读写存储器(RAM),现代RAM的结构和存取原理比较复杂,这里本文抛却具体差别,抽象出一个十分简单的存取模型来说明RAM的工作原理。

mysql优化相关_第15张图片

图5

从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。图5展示了一个4 x 4的主存模型。

主存的存取过程如下:

当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。

写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。

这里可以看出,主存存取的时间仅与存取次数呈线性关系,因为不存在机械操作,两次存取的数据的“距离”不会对时间有任何影响,例如,先取A0再取A1和先取A0再取D3的时间消耗是一样的。

磁盘存取原理

上文说过,索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。

图6是磁盘的整体结构示意图。

mysql优化相关_第16张图片

图6

一个磁盘由大小相同且同轴的圆形盘片组成,磁盘可以转动(各个磁盘必须同步转动)。在磁盘的一侧有磁头支架,磁头支架固定了一组磁头,每个磁头负责存取一个磁盘的内容。磁头不能转动,但是可以沿磁盘半径方向运动(实际是斜切向运动),每个磁头同一时刻也必须是同轴的,即从正上方向下看,所有磁头任何时候都是重叠的(不过目前已经有多磁头独立技术,可不受此限制)。

图7是磁盘结构的示意图。

mysql优化相关_第17张图片

图7

盘片被划分成一系列同心环,圆心是盘片中心,每个同心环叫做一个磁道,所有半径相同的磁道组成一个柱面。磁道被沿半径线划分成一个个小的段,每个段叫做一个扇区,每个扇区是磁盘的最小存储单元。为了简单起见,我们下面假设磁盘只有一个盘片和一个磁头。

当需要从磁盘读取数据时,系统会将数据逻辑地址传给磁盘,磁盘的控制电路按照寻址逻辑将逻辑地址翻译成物理地址,即确定要读的数据在哪个磁道,哪个扇区。为了读取这个扇区的数据,需要将磁头放到这个扇区上方,为了实现这一点,磁头需要移动对准相应磁道,这个过程叫做寻道,所耗费时间叫做寻道时间,然后磁盘旋转将目标扇区旋转到磁头下,这个过程耗费的时间叫做旋转时间。

局部性原理与磁盘预读

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用。

程序运行期间所需要的数据通常比较集中。

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。

预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。

B-/+Tree索引的性能分析

到这里终于可以分析B-/+Tree索引的性能了。

上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:

每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。

综上所述,用B-Tree作为索引结构效率是非常高的。

而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

上文还说过,B+Tree更适合外存索引,原因和内节点出度d有关。从上面分析可以看到,d越大索引的性能越好,而出度的上限取决于节点内key和data的大小:

dmax = floor(pagesize / (keysize + datasize + pointsize)) (pagesize – dmax >= pointsize)

dmax = floor(pagesize / (keysize + datasize + pointsize)) – 1 (pagesize – dmax < pointsize)

floor表示向下取整。由于B+Tree内节点去掉了data域,因此可以拥有更大的出度,拥有更好的性能。

这一章从理论角度讨论了与索引相关的数据结构与算法问题,下一章将讨论B+Tree是如何具体实现为MySQL中索引,同时将结合MyISAM和InnDB存储引擎介绍非聚集索引和聚集索引两种不同的索引实现形式。

MySQL索引实现

在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式。

MyISAM索引实现

MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:

mysql优化相关_第18张图片

图8

这里设表一共有三列,假设我们以Col1为主键,则图8是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:

mysql优化相关_第19张图片

图9

同样也是一颗B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分。

InnoDB索引实现

虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。

第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

mysql优化相关_第20张图片

图10

图10是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

第二个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。换句话说,InnoDB的所有辅助索引都引用主键作为data域。例如,图11为定义在Col3上的一个辅助索引:

mysql优化相关_第21张图片

图11

这里以英文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。

了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

下一章将具体讨论这些与索引有关的优化策略。

索引使用策略及优化

MySQL的优化主要分为结构优化(Scheme optimization)和查询优化(Query optimization)。本章讨论的高性能索引策略主要属于结构优化范畴。本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。

示例数据库

为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):

mysql优化相关_第22张图片

图12

MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。

最左前缀原理与相关优化

高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。

这里先说一下联合索引的概念。在上文中,我们都是假设索引只引用了单个的列,实际上,MySQL中的索引可以以一定顺序引用多个列,这种索引叫做联合索引,一般的,一个联合索引是一个有序元组<a1, a2, …, an>,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。

以employees.titles表为例,下面先查看其上都有哪些索引:

1
2
3
4
5
6
7
8
9
SHOW INDEX FROM employees . titles ;
+ -- -- -- -- + -- -- -- -- -- -- + -- -- -- -- -- + -- -- -- -- -- -- -- + -- -- -- -- -- -- - + -- -- -- -- -- - + -- -- -- -- -- -- - + -- -- -- + -- -- -- -- -- -- +
| Table    | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+ -- -- -- -- + -- -- -- -- -- -- + -- -- -- -- -- + -- -- -- -- -- -- -- + -- -- -- -- -- -- - + -- -- -- -- -- - + -- -- -- -- -- -- - + -- -- -- + -- -- -- -- -- -- +
| titles |            0 | PRIMARY    |              1 | emp_no        | A          |          NULL |        | BTREE        |
| titles |            0 | PRIMARY    |              2 | title        | A          |          NULL |        | BTREE        |
| titles |            0 | PRIMARY    |              3 | from_date    | A          |        443308 |        | BTREE        |
| titles |            1 | emp_no    |              1 | emp_no        | A          |        443308 |        | BTREE        |
+ -- -- -- -- + -- -- -- -- -- -- + -- -- -- -- -- + -- -- -- -- -- -- -- + -- -- -- -- -- -- - + -- -- -- -- -- - + -- -- -- -- -- -- - + -- -- -- + -- -- -- -- -- -- +

从结果中可以到titles表的主索引为<emp_no, title, from_date>,还有一个辅助索引<emp_no>。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

1
ALTER TABLE employees . titles DROP INDEX emp_no ;

这样就可以专心分析索引PRIMARY的行为了。

情况一:全列匹配。

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE emp_no = '10001' AND title = 'Senior Engineer' AND from_date = '1986-06-26' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- -- -- -- -- -- -- - + -- -- -- + -- -- -- - +
| id | select_type | table    | type    | possible_keys | key      | key_len | ref                | rows | Extra |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- -- -- -- -- -- -- - + -- -- -- + -- -- -- - +
|    1 | SIMPLE        | titles | const | PRIMARY        | PRIMARY | 59        | const , const , const |      1 |        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- -- -- -- -- -- -- - + -- -- -- + -- -- -- - +

很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE from_date = '1986-06-26' AND emp_no = '10001' AND title = 'Senior Engineer' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- -- -- -- -- -- -- - + -- -- -- + -- -- -- - +
| id | select_type | table    | type    | possible_keys | key      | key_len | ref                | rows | Extra |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- -- -- -- -- -- -- - + -- -- -- + -- -- -- - +
|    1 | SIMPLE        | titles | const | PRIMARY        | PRIMARY | 59        | const , const , const |      1 |        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- -- -- -- -- -- -- - + -- -- -- + -- -- -- - +

效果是一样的。

情况二:最左前缀匹配。

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE emp_no = '10001' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- - + -- -- -- + -- -- -- - +
| id | select_type | table    | type | possible_keys | key      | key_len | ref    | rows | Extra |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- - + -- -- -- + -- -- -- - +
|    1 | SIMPLE        | titles | ref    | PRIMARY        | PRIMARY | 4        | const |      1 |        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- - + -- -- -- + -- -- -- - +

当查询条件精确匹配索引的左边连续一个或几个列时,如<emp_no>或<emp_no, title>,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是key_len为4,说明只用到了索引的第一列前缀。

情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE emp_no = '10001' AND from_date = '1986-06-26' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- - + -- -- -- + -- -- -- -- -- -- - +
| id | select_type | table    | type | possible_keys | key      | key_len | ref    | rows | Extra        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- - + -- -- -- + -- -- -- -- -- -- - +
|    1 | SIMPLE        | titles | ref    | PRIMARY        | PRIMARY | 4        | const |      1 | Using where |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- - + -- -- -- + -- -- -- -- -- -- - +

此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让from_date也使用索引而不是where过滤,可以增加一个辅助索引<emp_no, from_date>,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date之间的“坑”填上。

首先我们看下title一共有几种不同的值:

1
2
3
4
5
6
7
8
9
10
11
12
SELECT DISTINCT ( title ) FROM employees . titles ;
+ -- -- -- -- -- -- -- -- -- -- +
| title                |
+ -- -- -- -- -- -- -- -- -- -- +
| Senior Engineer      |
| Staff                |
| Engineer            |
| Senior Staff        |
| Assistant Engineer |
| Technique Leader    |
| Manager              |
+ -- -- -- -- -- -- -- -- -- -- +

只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:

1
2
3
4
5
6
7
8
9
EXPLAIN SELECT * FROM employees . titles
WHERE emp_no = '10001'
AND title IN ( 'Senior Engineer' , 'Staff' , 'Engineer' , 'Senior Staff' , 'Assistant Engineer' , 'Technique Leader' , 'Manager' )
AND from_date = '1986-06-26' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
| id | select_type | table    | type    | possible_keys | key      | key_len | ref    | rows | Extra        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
|    1 | SIMPLE        | titles | range | PRIMARY        | PRIMARY | 59        | NULL |      7 | Using where |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +

这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:

1
2
3
4
5
6
7
SHOW PROFILES ;
+ -- -- -- -- -- + -- -- -- -- -- -- + -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - +
| Query_ID | Duration    | Query                                                                          |
+ -- -- -- -- -- + -- -- -- -- -- -- + -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - +
|        10 | 0.00058000 | SELECT * FROM employees . titles WHERE emp_no = '10001' AND from_date = '1986-06-26' |
|        11 | 0.00052500 | SELECT * FROM employees . titles WHERE emp_no = '10001' AND title IN . . .            |
+ -- -- -- -- -- + -- -- -- -- -- -- + -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - +

“填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

情况四:查询条件没有指定索引第一列。

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE from_date = '1986-06-26' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- + -- -- -- -- - + -- -- -- + -- -- -- -- + -- -- -- -- -- -- - +
| id | select_type | table    | type | possible_keys | key    | key_len | ref    | rows    | Extra        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- + -- -- -- -- - + -- -- -- + -- -- -- -- + -- -- -- -- -- -- - +
|    1 | SIMPLE        | titles | ALL    | NULL            | NULL | NULL      | NULL | 443308 | Using where |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- + -- -- -- -- -- -- -- - + -- -- -- + -- -- -- -- - + -- -- -- + -- -- -- -- + -- -- -- -- -- -- - +

由于不是最左前缀,索引这样的查询显然用不到索引。

情况五:匹配某列的前缀字符串。

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE emp_no = '10001' AND title LIKE 'Senior%' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
| id | select_type | table    | type    | possible_keys | key      | key_len | ref    | rows | Extra        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
|    1 | SIMPLE        | titles | range | PRIMARY        | PRIMARY | 56        | NULL |      1 | Using where |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +

此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。(原文表述有误,如果通配符%不出现在开头,则可以用到索引,但根据具体情况不同可能只会用其中一个前缀)

情况六:范围查询。

1
2
3
4
5
6
EXPLAIN SELECT * FROM employees . titles WHERE emp_no & lt ; '10010' and title = 'Senior Engineer' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
| id | select_type | table    | type    | possible_keys | key      | key_len | ref    | rows | Extra        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
|    1 | SIMPLE        | titles | range | PRIMARY        | PRIMARY | 4        | NULL |    16 | Using where |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +

范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。

1
2
3
4
5
6
7
8
9
EXPLAIN SELECT * FROM employees . titles
WHERE emp_no & lt ; 10010 '
AND title=' Senior Engineer '
AND from_date BETWEEN ' 1986 - 01 - 01 ' AND ' 1986 - 12 - 31' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
| id | select_type | table    | type    | possible_keys | key      | key_len | ref    | rows | Extra        |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +
|    1 | SIMPLE        | titles | range | PRIMARY        | PRIMARY | 4        | NULL |    16 | Using where |
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + -- -- -- - + -- -- -- -- -- -- -- - + -- -- -- -- - + -- -- -- -- - + -- -- -- + -- -- -- + -- -- -- -- -- -- - +

可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:

1
2
3
4
5
6
7
8
9
EXPLAIN SELECT * FROM employees . titles
WHERE emp_no BETWEEN '10001' AND '10010'
AND title = 'Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31' ;
+ -- -- + -- -- -- -- -- -- - + -- -- -- -- + --

你可能感兴趣的:(mysql优化相关)