在做日志分析的过程中,用到了hadoop框架中的hive,不过有些日志处理用hive中的函数处理显得力不从心,就需要用udf来进行扩展处理了
1 在eclipse中新建java project hiveudf 然后新建class package(com.afan) name(UDFLower)
2 添加jar library hadoop-0.20.2-core.jar hive-exec-0.7.0-cdh3u0.jar两个文件到project
3 编写代码
5 将udf_hive.jar放入配置好的linux系统的文件夹中路径为/home/udf/udf_hive.jar
6 打开hive命令行测试
hive> add jar /home/udf/udf_hive.jar;
Added udf_hive.jar to class path
Added resource: udf_hive.jar
创建udf函数
hive> create temporary function my_lower as 'com.afan.UDFLower';
创建测试数据
hive> create table dual (info string);
导入数据文件data.txt
data.txt文件内容为
WHO
AM
I
HELLO
hive> load data local inpath '/home/data/data.txt' into table dual;
hive> select info from dual;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0003, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0003
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0003
2011-05-15 06:46:05,459 Stage-1 map = 0%, reduce = 0%
2011-05-15 06:46:10,905 Stage-1 map = 100%, reduce = 0%
2011-05-15 06:46:13,963 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201105150525_0003
OK
WHO
AM
I
HELLO
使用udf函数
hive> select my_lower(info) from dual;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0002, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0002
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0002
2011-05-15 06:43:26,100 Stage-1 map = 0%, reduce = 0%
2011-05-15 06:43:34,364 Stage-1 map = 100%, reduce = 0%
2011-05-15 06:43:37,484 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201105150525_0002
OK
who
am
i
hello
经测试成功通过
参考文章http://landyer.iteye.com/blog/1070377
——————————————————————————————————
1、编写函数
from:http://blog.chinaunix.net/uid-28194925-id-3453844.html