注:此前写了一些列的分析RTMPdump(libRTMP)源代码的文章,在此列一个列表:
RTMPdump 源代码分析 1: main()函数
RTMPDump(libRTMP)源代码分析 2:解析RTMP地址——RTMP_ParseURL()
RTMPdump(libRTMP) 源代码分析 3: AMF编码
RTMPdump(libRTMP)源代码分析 4: 连接第一步——握手(Hand Shake)
RTMPdump(libRTMP) 源代码分析 5: 建立一个流媒体连接 (NetConnection部分)
RTMPdump(libRTMP) 源代码分析 6: 建立一个流媒体连接 (NetStream部分 1)
RTMPdump(libRTMP) 源代码分析 7: 建立一个流媒体连接 (NetStream部分 2)
RTMPdump(libRTMP) 源代码分析 8: 发送消息(Message)
RTMPdump(libRTMP) 源代码分析 9: 接收消息(Message)(接收视音频数据)
RTMPdump(libRTMP) 源代码分析 10: 处理各种消息(Message)
===============================
已经连续写了一系列的博客了,其实大部分内容都是去年搞RTMP研究的时候积累的经验,回顾一下过去的知识,其实RTMPdump(libRTMP)主要的功能也都分析的差不多了,现在感觉还需要一些查漏补缺。主要就是它是如何处理各种消息(Message)的这方面还没有研究的特明白,在此需要详细研究一下。
再来看一下RTMPdump(libRTMP)的“灵魂”函数RTMP_ClientPacket(),主要完成了各种消息的处理。
//处理接收到的数据 int RTMP_ClientPacket(RTMP *r, RTMPPacket *packet) { int bHasMediaPacket = 0; switch (packet->m_packetType) { //RTMP消息类型ID=1,设置块大小 case 0x01: /* chunk size */ //---------------- r->dlg->AppendCInfo("处理收到的数据。消息 Set Chunk Size (typeID=1)。"); //----------------------------- RTMP_LogPrintf("处理消息 Set Chunk Size (typeID=1)\n"); HandleChangeChunkSize(r, packet); break; //RTMP消息类型ID=3,致谢 case 0x03: /* bytes read report */ RTMP_Log(RTMP_LOGDEBUG, "%s, received: bytes read report", __FUNCTION__); break; //RTMP消息类型ID=4,用户控制 case 0x04: /* ctrl */ //---------------- r->dlg->AppendCInfo("处理收到的数据。消息 User Control (typeID=4)。"); //----------------------------- RTMP_LogPrintf("处理消息 User Control (typeID=4)\n"); HandleCtrl(r, packet); break; //RTMP消息类型ID=5 case 0x05: /* server bw */ //---------------- r->dlg->AppendCInfo("处理收到的数据。消息 Window Acknowledgement Size (typeID=5)。"); //----------------------------- RTMP_LogPrintf("处理消息 Window Acknowledgement Size (typeID=5)\n"); HandleServerBW(r, packet); break; //RTMP消息类型ID=6 case 0x06: /* client bw */ //---------------- r->dlg->AppendCInfo("处理收到的数据。消息 Set Peer Bandwidth (typeID=6)。"); //----------------------------- RTMP_LogPrintf("处理消息 Set Peer Bandwidth (typeID=6)\n"); HandleClientBW(r, packet); break; //RTMP消息类型ID=8,音频数据 case 0x08: /* audio data */ /*RTMP_Log(RTMP_LOGDEBUG, "%s, received: audio %lu bytes", __FUNCTION__, packet.m_nBodySize); */ HandleAudio(r, packet); bHasMediaPacket = 1; if (!r->m_mediaChannel) r->m_mediaChannel = packet->m_nChannel; if (!r->m_pausing) r->m_mediaStamp = packet->m_nTimeStamp; break; //RTMP消息类型ID=9,视频数据 case 0x09: /* video data */ /*RTMP_Log(RTMP_LOGDEBUG, "%s, received: video %lu bytes", __FUNCTION__, packet.m_nBodySize); */ HandleVideo(r, packet); bHasMediaPacket = 1; if (!r->m_mediaChannel) r->m_mediaChannel = packet->m_nChannel; if (!r->m_pausing) r->m_mediaStamp = packet->m_nTimeStamp; break; //RTMP消息类型ID=15,AMF3编码,忽略 case 0x0F: /* flex stream send */ RTMP_Log(RTMP_LOGDEBUG, "%s, flex stream send, size %lu bytes, not supported, ignoring", __FUNCTION__, packet->m_nBodySize); break; //RTMP消息类型ID=16,AMF3编码,忽略 case 0x10: /* flex shared object */ RTMP_Log(RTMP_LOGDEBUG, "%s, flex shared object, size %lu bytes, not supported, ignoring", __FUNCTION__, packet->m_nBodySize); break; //RTMP消息类型ID=17,AMF3编码,忽略 case 0x11: /* flex message */ { RTMP_Log(RTMP_LOGDEBUG, "%s, flex message, size %lu bytes, not fully supported", __FUNCTION__, packet->m_nBodySize); /*RTMP_LogHex(packet.m_body, packet.m_nBodySize); */ /* some DEBUG code */ #if 0 RTMP_LIB_AMFObject obj; int nRes = obj.Decode(packet.m_body+1, packet.m_nBodySize-1); if(nRes < 0) { RTMP_Log(RTMP_LOGERROR, "%s, error decoding AMF3 packet", __FUNCTION__); /*return; */ } obj.Dump(); #endif if (HandleInvoke(r, packet->m_body + 1, packet->m_nBodySize - 1) == 1) bHasMediaPacket = 2; break; } //RTMP消息类型ID=18,AMF0编码,数据消息 case 0x12: /* metadata (notify) */ RTMP_Log(RTMP_LOGDEBUG, "%s, received: notify %lu bytes", __FUNCTION__, packet->m_nBodySize); //处理元数据,暂时注释 /* if (HandleMetadata(r, packet->m_body, packet->m_nBodySize)) bHasMediaPacket = 1; break; */ //RTMP消息类型ID=19,AMF0编码,忽略 case 0x13: RTMP_Log(RTMP_LOGDEBUG, "%s, shared object, not supported, ignoring", __FUNCTION__); break; //RTMP消息类型ID=20,AMF0编码,命令消息 //处理命令消息! case 0x14: //---------------- r->dlg->AppendCInfo("处理收到的数据。消息 命令 (AMF0编码) (typeID=20)。"); //----------------------------- /* invoke */ RTMP_Log(RTMP_LOGDEBUG, "%s, received: invoke %lu bytes", __FUNCTION__, packet->m_nBodySize); RTMP_LogPrintf("处理命令消息 (typeID=20,AMF0编码)\n"); /*RTMP_LogHex(packet.m_body, packet.m_nBodySize); */ if (HandleInvoke(r, packet->m_body, packet->m_nBodySize) == 1) bHasMediaPacket = 2; break; //RTMP消息类型ID=22 case 0x16: { /* go through FLV packets and handle metadata packets */ unsigned int pos = 0; uint32_t nTimeStamp = packet->m_nTimeStamp; while (pos + 11 < packet->m_nBodySize) { uint32_t dataSize = AMF_DecodeInt24(packet->m_body + pos + 1); /* size without header (11) and prevTagSize (4) */ if (pos + 11 + dataSize + 4 > packet->m_nBodySize) { RTMP_Log(RTMP_LOGWARNING, "Stream corrupt?!"); break; } if (packet->m_body[pos] == 0x12) { HandleMetadata(r, packet->m_body + pos + 11, dataSize); } else if (packet->m_body[pos] == 8 || packet->m_body[pos] == 9) { nTimeStamp = AMF_DecodeInt24(packet->m_body + pos + 4); nTimeStamp |= (packet->m_body[pos + 7] << 24); } pos += (11 + dataSize + 4); } if (!r->m_pausing) r->m_mediaStamp = nTimeStamp; /* FLV tag(s) */ /*RTMP_Log(RTMP_LOGDEBUG, "%s, received: FLV tag(s) %lu bytes", __FUNCTION__, packet.m_nBodySize); */ bHasMediaPacket = 1; break; } default: RTMP_Log(RTMP_LOGDEBUG, "%s, unknown packet type received: 0x%02x", __FUNCTION__, packet->m_packetType); #ifdef _DEBUG RTMP_LogHex(RTMP_LOGDEBUG, (const uint8_t *)packet->m_body, packet->m_nBodySize); #endif } return bHasMediaPacket; }
前文已经分析过当消息类型ID为0x14(20)的时候,即AMF0编码的命令消息的时候,会调用HandleInvoke()进行处理。
参考:RTMPdump(libRTMP) 源代码分析 7: 建立一个流媒体连接 (NetStream部分 2)
这里就不再对这种类型ID的消息进行分析了,分析一下其他类型的消息,毕竟从发起一个RTMP连接到接收视音频数据这个过程中是要处理很多消息的。
参考:RTMP流媒体播放过程
下面我们按照消息ID从小到大的顺序,看看接收到的各种消息都是如何处理的。
消息类型ID是0x01的消息功能是“设置块(Chunk)大小”,处理函数是HandleChangeChunkSize(),可见函数内容很简单。
static void HandleChangeChunkSize(RTMP *r, const RTMPPacket *packet) { if (packet->m_nBodySize >= 4) { r->m_inChunkSize = AMF_DecodeInt32(packet->m_body); RTMP_Log(RTMP_LOGDEBUG, "%s, received: chunk size change to %d", __FUNCTION__, r->m_inChunkSize); } }
消息类型ID是0x03的消息功能是“致谢”,没有处理函数。
消息类型ID是0x04的消息功能是“用户控制(UserControl)”,处理函数是HandleCtrl(),这类的消息出现的频率非常高,函数体如下所示。具体用户控制消息的作用这里就不多说了,有相应的文档可以参考。
注:该函数中间有一段很长的英文注释,英语好的大神可以看一看
//处理用户控制(UserControl)消息。用户控制消息是服务器端发出的。 static void HandleCtrl(RTMP *r, const RTMPPacket *packet) { short nType = -1; unsigned int tmp; if (packet->m_body && packet->m_nBodySize >= 2) //事件类型(2B) nType = AMF_DecodeInt16(packet->m_body); RTMP_Log(RTMP_LOGDEBUG, "%s, received ctrl. type: %d, len: %d", __FUNCTION__, nType, packet->m_nBodySize); /*RTMP_LogHex(packet.m_body, packet.m_nBodySize); */ if (packet->m_nBodySize >= 6) { //不同事件类型做不同处理 switch (nType) { //流开始 case 0: //流ID tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream Begin %d", __FUNCTION__, tmp); break; //流结束 case 1: //流ID tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream EOF %d", __FUNCTION__, tmp); if (r->m_pausing == 1) r->m_pausing = 2; break; //流枯竭 case 2: //流ID tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream Dry %d", __FUNCTION__, tmp); break; //是录制流 case 4: tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream IsRecorded %d", __FUNCTION__, tmp); break; //Ping客户端 case 6: /* server ping. reply with pong. */ tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Ping %d", __FUNCTION__, tmp); RTMP_SendCtrl(r, 0x07, tmp, 0); break; /* FMS 3.5 servers send the following two controls to let the client * know when the server has sent a complete buffer. I.e., when the * server has sent an amount of data equal to m_nBufferMS in duration. * The server meters its output so that data arrives at the client * in realtime and no faster. * * The rtmpdump program tries to set m_nBufferMS as large as * possible, to force the server to send data as fast as possible. * In practice, the server appears to cap this at about 1 hour's * worth of data. After the server has sent a complete buffer, and * sends this BufferEmpty message, it will wait until the play * duration of that buffer has passed before sending a new buffer. * The BufferReady message will be sent when the new buffer starts. * (There is no BufferReady message for the very first buffer; * presumably the Stream Begin message is sufficient for that * purpose.) * * If the network speed is much faster than the data bitrate, then * there may be long delays between the end of one buffer and the * start of the next. * * Since usually the network allows data to be sent at * faster than realtime, and rtmpdump wants to download the data * as fast as possible, we use this RTMP_LF_BUFX hack: when we * get the BufferEmpty message, we send a Pause followed by an * Unpause. This causes the server to send the next buffer immediately * instead of waiting for the full duration to elapse. (That's * also the purpose of the ToggleStream function, which rtmpdump * calls if we get a read timeout.) * * Media player apps don't need this hack since they are just * going to play the data in realtime anyway. It also doesn't work * for live streams since they obviously can only be sent in * realtime. And it's all moot if the network speed is actually * slower than the media bitrate. */ case 31: tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream BufferEmpty %d", __FUNCTION__, tmp); if (!(r->Link.lFlags & RTMP_LF_BUFX)) break; if (!r->m_pausing) { r->m_pauseStamp = r->m_channelTimestamp[r->m_mediaChannel]; RTMP_SendPause(r, TRUE, r->m_pauseStamp); r->m_pausing = 1; } else if (r->m_pausing == 2) { RTMP_SendPause(r, FALSE, r->m_pauseStamp); r->m_pausing = 3; } break; case 32: tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream BufferReady %d", __FUNCTION__, tmp); break; default: tmp = AMF_DecodeInt32(packet->m_body + 2); RTMP_Log(RTMP_LOGDEBUG, "%s, Stream xx %d", __FUNCTION__, tmp); break; } } if (nType == 0x1A) { RTMP_Log(RTMP_LOGDEBUG, "%s, SWFVerification ping received: ", __FUNCTION__); if (packet->m_nBodySize > 2 && packet->m_body[2] > 0x01) { RTMP_Log(RTMP_LOGERROR, "%s: SWFVerification Type %d request not supported! Patches welcome...", __FUNCTION__, packet->m_body[2]); } #ifdef CRYPTO /*RTMP_LogHex(packet.m_body, packet.m_nBodySize); */ /* respond with HMAC SHA256 of decompressed SWF, key is the 30byte player key, also the last 30 bytes of the server handshake are applied */ else if (r->Link.SWFSize) { RTMP_SendCtrl(r, 0x1B, 0, 0); } else { RTMP_Log(RTMP_LOGERROR, "%s: Ignoring SWFVerification request, use --swfVfy!", __FUNCTION__); } #else RTMP_Log(RTMP_LOGERROR, "%s: Ignoring SWFVerification request, no CRYPTO support!", __FUNCTION__); #endif } }
消息类型ID是0x05的消息功能是“窗口致谢大小(Window Acknowledgement Size,翻译的真是挺别扭)”,处理函数是HandleServerBW()。在这里注意一下,该消息在Adobe官方公开的文档中叫“Window Acknowledgement Size”,但是在Adobe公开协议规范之前,破解RTMP协议的组织一直管该协议叫“ServerBW”,只是个称呼,倒是也无所谓~处理代码很简单:
static void HandleServerBW(RTMP *r, const RTMPPacket *packet) { r->m_nServerBW = AMF_DecodeInt32(packet->m_body); RTMP_Log(RTMP_LOGDEBUG, "%s: server BW = %d", __FUNCTION__, r->m_nServerBW); }
消息类型ID是0x06的消息功能是“设置对等端带宽(Set Peer Bandwidth)”,处理函数是HandleClientBW()。与上一种消息一样,该消息在Adobe官方公开的文档中叫“Set Peer Bandwidth”,但是在Adobe公开协议规范之前,破解RTMP协议的组织一直管该协议叫“ClientBW”。处理函数也不复杂:
static void HandleClientBW(RTMP *r, const RTMPPacket *packet) { r->m_nClientBW = AMF_DecodeInt32(packet->m_body); if (packet->m_nBodySize > 4) r->m_nClientBW2 = packet->m_body[4]; else r->m_nClientBW2 = -1; RTMP_Log(RTMP_LOGDEBUG, "%s: client BW = %d %d", __FUNCTION__, r->m_nClientBW, r->m_nClientBW2); }
消息类型ID是0x08的消息用于传输音频数据,在这里不处理。
消息类型ID是0x09的消息用于传输音频数据,在这里不处理。
消息类型ID是0x0F-11的消息用于传输AMF3编码的命令。
消息类型ID是0x12-14的消息用于传输AMF0编码的命令。
注:消息类型ID是0x14的消息很重要,用于传输AMF0编码的命令,已经做过分析。
rtmpdump源代码(Linux):http://download.csdn.net/detail/leixiaohua1020/6376561
rtmpdump源代码(VC 2005 工程):http://download.csdn.net/detail/leixiaohua1020/6563163