Centos修改时区时间日期
cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
修改时区
找到相应的时区文件 /usr/share/zoneinfo/Asia/Shanghai
替换当前的/etc/localtime。
修改/etc/sysconfig/clock文件的内容为:
ZONE="Asia/Shanghai"
UTC=false
ARC=false
修改日期
时间设定成2008年9月10日的命令如下:
#date -s 09/10/2008
修改时间
将系统时间设定成上午10点25分0秒的命令如下。
#date -s 10:25:00
同步biso时间
同步BIOS时钟,强制把系统时间写入CMOS,命令如下:
#clock -w
附 ntpq 详解:
命令 "ntpq -q" 输出下面这样的一个表:
remote refid st t when poll reach delay offset jitter
==============================================================================
LOCAL(0) .LOCL. 10 l 96h 64 0 0.000 0.000 0.000
*ns2.example.com 10.193.2.20 2 u 936 1024 377 31.234 3.353 3.096
更多细节 表头 remote – 用于同步的远程节点或服务器。“LOCAL”表示本机 (当没有远程服务器可用时会出现) refid – 远程的服务器进行同步的更高一级服务器 st – 远程节点或服务器的 Stratum(级别,NTP 时间同步是分层的) t – 类型 (u: unicast(单播) 或 manycast(选播) 客户端, b: broadcast(广播) 或 multicast(多播) 客户端, l: 本地时钟, s: 对称节点(用于备份), A: 选播服务器, B: 广播服务器, M: 多播服务器, 参见“Automatic Server Discovery“) when – 最后一次同步到现在的时间 (默认单位为秒, “h”表示小时,“d”表示天) poll – 同步的频率:rfc5905建议在 NTPv4 中这个值的范围在 4 (16秒) 至 17 (36小时) 之间(即2的指数次秒),然而观察发现这个值的实际大小在一个小的多的范围内 :64 (26 )秒 至 1024 (210 )秒 reach – 一个8位的左移移位寄存器值,用来测试能否和服务器连接,每成功连接一次它的值就会增加,以 8 进制显示 delay – 从本地到远程节点或服务器通信的往返时间(毫秒) offset – 主机与远程节点或服务器时间源的时间偏移量,offset 越接近于0,主机和 NTP 服务器的时间越接近(以方均根表示,单位为毫秒) jitter – 与远程节点同步的时间源的平均偏差(多个时间样本中的 offset 的偏差,单位是毫秒),这个数值的绝对值越小,主机的时间就越精确 字段的统计代码 表中第一个字符(统计代码)是状态标识(参见 Peer Status Word),包含 " ","x","-","#","+","*","o": " " – 无状态,表示: 没有远程通信的主机 "LOCAL" 即本机 (未被使用的)高层级服务器 远程主机使用的这台机器作为同步服务器 “x” – 已不再使用 “-” – 已不再使用 “#” – 良好的远程节点或服务器但是未被使用 (不在按同步距离排序的前六个节点中,作为备用节点使用) “+” – 良好的且优先使用的远程节点或服务器(包含在组合算法中) “*” – 当前作为优先主同步对象的远程节点或服务器 “o” – PPS 节点 (当优先节点是有效时)。实际的系统同步是源于秒脉冲信号(pulse-per-second,PPS),可能通过PPS 时钟驱动或者通过内核接口。 参考 Clock Select Algorithm. refid refid 有下面这些状态值 一个IP地址 – 远程节点或服务器的 IP 地址 .LOCL. – 本机 (当没有远程节点或服务器可用时) .PPS. – 时间标准中的“Pulse Per Second”(秒脉冲) .IRIG. – Inter-Range Instrumentation Group 时间码 .ACTS. – 美国 NIST 标准时间 电话调制器 .NIST. –美国 NIST 标准时间电话调制器 .PTB. – 德国 PTB 时间标准电话调制器 .USNO. – 美国 USNO 标准时间 电话调制器 .CHU. – CHU (HF, Ottawa, ON, Canada) 标准时间无线电接收器 .DCFa. – DCF77 (LF, Mainflingen, Germany) 标准时间无线电接收器 .HBG. – HBG (LF Prangins, Switzerland) 标准时间无线电接收器 .JJY. – JJY (LF Fukushima, Japan) 标准时间无线电接收器 .LORC. – LORAN-C station (MF) 标准时间无线电接收器,注: 不再可用 (被 eLORAN 废弃) .MSF. – MSF (LF, Anthorn, Great Britain) 标准时间无线电接收器 .TDF. – TDF (MF, Allouis, France)标准时间无线电接收器 .WWV. – WWV (HF, Ft. Collins, CO, America) 标准时间无线电接收器 .WWVB. – WWVB (LF, Ft. Collins, CO, America) 标准时间无线电接收器 .WWVH. – WWVH (HF, Kauai, HI, America) 标准时间无线电接收器 .GOES. – 美国静止环境观测卫星; .GPS. – 美国 GPS; .GAL. – 伽利略定位系统欧洲 GNSS; .ACST. – 选播服务器 .AUTH. – 认证错误 .AUTO. – Autokey (NTP 的一种认证机制)顺序错误 .BCST. – 广播服务器 .CRYPT. – Autokey 协议错误 .DENY. – 服务器拒绝访问; .INIT. – 关联初始化 .MCST. – 多播服务器 .RATE. – (轮询) 速率超出限定 .TIME. – 关联超时 .STEP. – 间隔时长改变,偏移量比危险阈值小(1000ms) 比间隔时间 (125ms)大 操作要点 一个时间服务器只会报告时间信息而不会从客户端更新时间(单向更新),而一个节点可以更新其他同级节点的时间,结合出一个彼此同意的时间(双向更新)。
初次启动时: 除非使用 iburst 选项,客户端通常需要花几分钟来和服务器同步。如果客户端在启动时时间与 NTP 服务器的时间差大于 1000 秒,守护进程会退出并在系统日志中记录,让操作者手动设置时间差小于 1000 秒后再重新启动。如果时间差小于 1000 秒,但是大于 128 秒,会自动矫正间隔,并自动重启守护进程。
当第一次启动时,时间频率文件(通常是 ntp.drift 文件,记录时间偏移)不存在,守护进程进入一个特殊模式来矫正频率。当时钟不符合规范时这会需要 900 秒。当校正完成后,守护进程创建时间频率文件进入普通模式,并分步校正剩余的偏差。
NTP 0 层(Stratum 0 )的设备如原子钟(铯,铷),GPS 时钟或者其他标准时间的无线电时钟为 1 层(Stratum 1)的时间服务器提供时间信号。NTP 只报告UTC 时间(统一协调时,Coordinated Universal Time)。客户端程序使用时区从 UTC 导出本地时间。
NTP 协议是高精度的,使用的精度小于纳秒(2的 -32 次方)。主机的时间精度和其他参数(受硬件和操作系统限制)使用命令 “ntpq -c rl” 查看(参见 rfc1305 通用变量和 rfc5905)。
precision 为四舍五入值,且为 2 的幂数。因此精度为 2precision (秒)
rootdelay – 与同步网络中主同步服务器的总往返延时。注意这个值可以是正数或者负数,取决于时钟的精度。
rootdisp – 相对于同步网络中主同步服务器的偏差(秒)
tc – NTP 算法 PLL (phase locked loop,锁相环路) 或 FLL (frequency locked loop,锁频回路) 时间常量
mintc – NTP 算法 PLL/FLL 最小时间常亮或“最快响应
offset – 由结合算法得出的系统时钟偏移量(毫秒)
frequency – 系统时钟频率
sys_jitter – 由结合算法得出的系统时钟平均偏差(毫秒)
clk_jitter – 硬件时钟平均偏差(毫秒)
clk_wander – 硬件时钟偏移(PPM – 百分之一)
Jitter (也叫 timing jitter) 表示短期变化大于10HZ 的频率, wander 表示长期变化大于10HZ 的频率 (Stability 表示系统的频率随时间的变化,和 aging, drift, trends 等是同义词)
NTP 软件维护一系列连续更新的频率变化的校正值。对于设置正确的稳定系统,在非拥塞的网络中,现代硬件的 NTP 时钟同步通常与 UTC 标准时间相差在毫秒内。(在千兆 LAN 网络中可以达到何种精度?)
对于 UTC 时间,闰秒 leap second 可以每两年插入一次用于同步地球自传的变化。注意本地时间为夏令时时时间会有一小时的变化。在重同步之前客户端设备会使用独立的 UTC 时间,除非客户端使用了偏移校准。
闰秒发生时会怎样: 闰秒发生时,会对当天时间增加或减少一秒。闰秒的调整在 UTC 时间当天的最后一秒。如果增加一秒,UTC 时间会出现 23:59:60。即 23:59:59 到 0:00:00 之间实际上需要 2 秒钟。如果减少一秒,时间会从 23:59:58 跳至 0:00:00 。另见 The Kernel Discipline.
那么… 间隔阈值(step threshold)的真实值是多少: 125ms 还是 128ms? PLL/FLL tc 的单位是什么 (log2 s? ms?)?在非拥塞的千兆 LAN 中时间节点间的精度能达到多少? 感谢 Camilo M 和 Chris B的评论。 欢迎校正错误和更多细节的探讨。 谢谢 Martin 附录 NTP 的纪元 从 1900 开始而 UNIX 的从 1970开始. 时间校正 是逐渐进行的,因此时间的完全同步可能会画上几个小时。 节点状态 可以被记录到 summarise/plot time offsets and errors RMS – 均方根 PLL – 锁相环路 FLL – 锁频回路 PPM – 百万分之一,用于描述频率的变化 man ntpq (Gentoo 简明版本) man ntpq (长期维护版本) man ntpq (Gentoo 长期维护版本) 另见 ntpq – 标准 NTP 查询程序 The Network Time Protocol (NTP) 分布 NTP 的简明历史 一个更多细节的简明历史 “Mills, D.L., A brief history of NTP time: confessions of an Internet timekeeper. Submitted for publication; please do not cite or redistribute” (pdf) NTP RFC 标准文档 Network Time Protocol (Version 3) RFC – txt, or pdf. Appendix E, The NTP Timescale and its Chronometry, p70, 包含了对过去 5000 年我们的计时系统的变化和关系的有趣解释。 维基百科: Time 和 Calendar John Harrison and the Longitude problem Clock of the Long Now – The 10,000 Year Clock John C Taylor – Chronophage Orders of magnitude of time Greenwich Time Signal 其他 SNTP (Simple Network Time Protocol, RFC 4330,简单网络协议)基本上也是NTP,但是少了一些基于 RFC 1305 实现的 NTP 的一些不再需要的内部算法。 Win32 时间 Windows Time Service 是 SNTP 的非标准实现,没有精度的保证,并假设精度几乎有 1-2 秒的范围。(因为没有系统时间变化校正) 还有一个PTP (IEEE 1588) Precision Time Protocol(精准时间协议)。见维基百科:Precision Time Protocol。软件程序为 PTPd。虫咬的功能是这是一个 LAN 高精度主从同步系统,精度在毫秒级,使用 International Atomic Time (TAI, monotonic,无闰秒)。数据报时间戳需要在网卡中启用。支持 PTP 的网络会对数据报记录时间戳以减少交换机路由器的影响。也可以在不记录时间戳的网络中使用 PTP 但可能应为时间偏差太大而无法同步。因此使用这个需要对网络进行设置。 更老的时间同步协议 DTSS – DEC公司的数字时间同步服务, 被 NTP 所取代。例子: DTSS VMS C code c2000。 (哪里有关于 DTSS 的文章或文档吗?) DAYTIME protocol,使用 TCP 或 UDP 13 端口同步 ICMP Timestamp 和 ICMP Timestamp Reply,使用 ICMP 协议同步 Time Protocol,使用 TCP 或 UDP 37 号端口同步
via: http://nlug.ml1.co.uk/2012/01/ntpq-p-output/831 作者:Martin L 译者:Liao 校对:wxy 本文由 LCTT 原创翻译,Linux中国 荣誉推出