互斥锁和条件变量

  为了允许在线程或进程之间共享数据,同步时必须的,互斥锁和条件变量是同步的基本组成部分。

1、互斥锁

  互斥锁是用来保护临界区资源,实际上保护的是临界区中被操纵的数据,互斥锁通常用于保护由多个线程或多进程分享的共享数据。一般是一些可供线程间使用的全局变量,来达到线程同步的目的,即保证任何时刻只有一个线程或进程在执行其中的代码。一般加锁的轮廓如下:

pthread_mutex_lock() 临界区 pthread_mutex_unlock()

互斥锁API

pthread_mutex_lock(pthread_mutex_t *mutex);

 用此函数加锁时,如果mutex已经被锁住,当前尝试加锁的线程就会阻塞,直到互斥锁被其他线程释放。当此函数返回时,说明互斥锁已经被当前线程成功加锁.

pthread_mutex_trylock(pthread_mutex_t *mutex);

 用此函数加锁时,如果mutex已经卑琐主,当前尝试加锁的线程不会阻塞,而是立即返回,返回的错误码为EBUSY,而不是阻塞等待。

pthread_mutex_unlock(pthread_mutex_t *mutex);

注意使用锁之前要记得初始化。互斥锁的初始化有两种初始化方式:

1.对于静态分配的互斥锁一半用宏赋值的方式初始化

eg: static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

2.对于动态分配的互斥锁(如调用malloc)或分配在共享内存中,则必须调用pthread_mutex_init(pthread_mutex *mutex, pthread_mutexattr_t *mutexattr)函数来进行初始化。

例子1:写个程序实现生产者—消费者问题,先只考虑多个生产者线程之间的同步,直到所有的生产者线程都完成工作以后,才启动消费者线程。程序如下:

View Code
 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <unistd.h>
 4 #include <pthread.h>
 5 #include <errno.h>
 6 
 7 #define     MAXNITEMS        1000000
 8 #define     MAXNTHREADS     100
 9 
10 int nitems;
11 
12 struct
13 {
14     pthread_mutex_t     mutex;
15     int                 buff[MAXNITEMS];
16     int                 nput;
17     int                 nval;
18 } shared = {
19     PTHREAD_MUTEX_INITIALIZER
20 };
21 
22 void *produce(void*);
23 void *consume(void*);
24 
25 int main(int argc,char *argv[])
26 {
27     int     i,nthreads,count[MAXNTHREADS];
28     pthread_t tid_produce[MAXNTHREADS],tid_consume;
29     if(argc != 3)
30     {
31         printf("usage: producongs2 <#itmes> <#threads>.\n");
32         exit(0);
33     }
34     nitems = atoi(argv[1]);
35     nthreads = atoi(argv[2]);
36     pthread_setconcurrency(nthreads);  //设置线程并发级别
37     for(i=0;i<nthreads;++i)
38     {
39         count[i] = 0;
40         pthread_create(&tid_produce[i],NULL,produce,&count[i]);
41     }
42     for(i=0;i<nthreads;i++)
43     {
44         pthread_join(tid_produce[i],NULL); //等待线程退出
45         printf("count[%d] = %d\n",i,count[i]);
46     }
47     pthread_create(&tid_consume,NULL,consume,NULL);
48     pthread_join(tid_consume,NULL);  //等待线程退出
49     exit(0);
50 }
51 
52 void *produce(void *arg)
53 {
54     for(; ;)
55     {
56         pthread_mutex_lock(&shared.mutex); //加锁
57         if(shared.nput >= nitems)
58         {
59             pthread_mutex_unlock(&shared.mutex); //释放锁
60             return ;
61         }
62         shared.buff[shared.nput] = shared.nval;
63         shared.nput++;
64         shared.nval++;
65         pthread_mutex_unlock(&shared.mutex); //加锁
66         *((int*) arg) += 1;
67     }
68 }
69 void *consume(void *arg)
70 {
71     int     i;
72     for(i=0;i<nitems;i++)
73     {
74         if(shared.buff[i] != i)
75             printf("buff[%d] = %d\n",i,shared.buff[i]);
76     }
77     return;
78 }

程序执行结果如下:

互斥锁和条件变量_第1张图片

例子2:改进例子1,所有生产者线程启动后立即启动消费者线程,这样生产者线程产生数据的同时,消费者线程就能出来它,此时必须同步生产者和消费者,程序如下:

View Code
 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <unistd.h>
 4 #include <pthread.h>
 5 #include <errno.h>
 6 
 7 #define     MAXNITEMS        1000000
 8 #define     MAXNTHREADS     100
 9 
10 int nitems;
11 
12 struct
13 {
14     pthread_mutex_t     mutex;
15     int                 buff[MAXNITEMS];
16     int                 nput;
17     int                 nval;
18 } shared = {
19     PTHREAD_MUTEX_INITIALIZER
20 };
21 
22 void *produce(void*);
23 void *consume(void*);
24 void consume_wait(int);
25 int main(int argc,char *argv[])
26 {
27     int     i,nthreads,count[MAXNTHREADS];
28     pthread_t tid_produce[MAXNTHREADS],tid_consume;
29     if(argc != 3)
30     {
31         printf("usage: producongs2 <#itmes> <#threads>.\n");
32         exit(0);
33     }
34     nitems = atoi(argv[1]);
35     nthreads = atoi(argv[2]);
36     pthread_setconcurrency(nthreads+1);
37     //创建生产者线程
38     for(i=0;i<nthreads;++i)
39     {
40         count[i] = 0;
41         pthread_create(&tid_produce[i],NULL,produce,&count[i]);
42     }
43     //创建消费者线程
44     pthread_create(&tid_consume,NULL,consume,NULL);
45     for(i=0;i<nthreads;i++)
46     {
47         pthread_join(tid_produce[i],NULL);
48         printf("count[%d] = %d\n",i,count[i]);
49     }
50     //等待消费者线程退出
51     pthread_join(tid_consume,NULL);
52     exit(0);
53 }
54 
55 void *produce(void *arg)
56 {
57     for(; ;)
58     {
59         pthread_mutex_lock(&shared.mutex);
60         if(shared.nput >= nitems)
61         {
62             pthread_mutex_unlock(&shared.mutex);
63             return ;
64         }
65         shared.buff[shared.nput] = shared.nval;
66         shared.nput++;
67         shared.nval++;
68         pthread_mutex_unlock(&shared.mutex);
69         *((int*) arg) += 1;
70     }
71 }
72 void *consume(void *arg)
73 {
74     int     i;
75     for(i=0;i<nitems;i++)
76     {
77         consume_wait(i);
78         if(shared.buff[i] != i)
79             printf("buff[%d] = %d\n",i,shared.buff[i]);
80     }
81     return;
82 }
83 void consume_wait(int i)
84 {
85     for(; ;)  //进行轮询,判断i是否已经由生产者生产
86     {
87         pthread_mutex_lock(&shared.mutex);
88         if(i<shared.nput)   //i已经生产
89         {
90             pthread_mutex_unlock(&shared.mutex);
91             return; 
92         }
93         pthread_mutex_unlock(&shared.mutex);
94     }
95 }

存在的问题:当消费者获取的条目尚没有准备好时,消费者线程一次次的循环去判断,每次给互斥锁解锁又上锁,这种轮询的办法浪费CPU时间。

2、条件变量

  互斥锁用于上锁,条件变量用于等待,条件变量的使用是与互斥锁共通使用的。

2.1等待与信号发送

  条件变量类型是pthread_cond_t,调用函数如下:

pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *pmutex);

pthread_cond_signal(pthread_cond_t *pcond);

每个条件变量总是有一个互斥锁与之关联。现在采用条件变量实现生产者与消费者问题,程序如下:

View Code
 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <unistd.h>
 4 #include <pthread.h>
 5 #include <errno.h>
 6 
 7 #define     MAXNITEMS        1000000
 8 #define     MAXNTHREADS     100
 9 
10 int nitems;
11 
12 struct
13 {
14     pthread_mutex_t     mutex;
15     int                 buff[MAXNITEMS];
16     int                 nput;
17     int                 nval;
18 } shared = {
19     PTHREAD_MUTEX_INITIALIZER
20 };
21 //条件变量
22 struct {
23     pthread_mutex_t mutex;  
24     pthread_cond_t  cond;
25     int nready;
26 }nready = {
27   PTHREAD_MUTEX_INITIALIZER,PTHREAD_COND_INITIALIZER
28 };
29 
30 void *produce(void*);
31 void *consume(void*);
32 
33 int main(int argc,char *argv[])
34 {
35     int     i,nthreads,count[MAXNTHREADS];
36     pthread_t tid_produce[MAXNTHREADS],tid_consume;
37     if(argc != 3)
38     {
39         printf("usage: producongs2 <#itmes> <#threads>.\n");
40         exit(0);
41     }
42     nitems = atoi(argv[1]);
43     nthreads = atoi(argv[2]);
44     pthread_setconcurrency(nthreads+1);
45     for(i=0;i<nthreads;++i)
46     {
47         count[i] = 0;
48         pthread_create(&tid_produce[i],NULL,produce,&count[i]);
49     }
50     pthread_create(&tid_consume,NULL,consume,NULL);
51     for(i=0;i<nthreads;i++)
52     {
53         pthread_join(tid_produce[i],NULL);
54         printf("count[%d] = %d\n",i,count[i]);
55     }
56     pthread_join(tid_consume,NULL);
57     exit(0);
58 }
59 
60 void *produce(void *arg)
61 {
62     printf("producer begins work\n");
63     for(; ;)
64     {
65         pthread_mutex_lock(&shared.mutex);
66         if(shared.nput >= nitems)
67         {
68             pthread_mutex_unlock(&shared.mutex);
69             return ;
70         }
71         shared.buff[shared.nput] = shared.nval;
72         shared.nput++;
73         shared.nval++;
74         pthread_mutex_unlock(&shared.mutex);
75         pthread_mutex_lock(&nready.mutex);
76         if(nready.nready == 0)
77             pthread_cond_signal(&nready.cond); //通知消费者
78         nready.nready++;
79         pthread_mutex_unlock(&nready.mutex);
80         *((int*) arg) += 1;
81     }
82 }
83 void *consume(void *arg)
84 {
85     int     i;
86     printf("consuemer begins work.\n");
87     for(i=0;i<nitems;i++)
88     {
89         pthread_mutex_lock(&nready.mutex);
90         while(nready.nready == 0)
91             pthread_cond_wait(&nready.cond,&nready.mutex); //等待生产者
92         nready.nready--;
93         pthread_mutex_unlock(&nready.mutex);
94         if(shared.buff[i] != i)
95             printf("buff[%d] = %d\n",i,shared.buff[i]);
96     }
97     return;
98 }

程序执行结果如下:

互斥锁和条件变量_第2张图片

总的来说,给条件变量发送信号的过程代码如下:

struct
{
    pthread_mutex_t    mutex;
    pthread_cond_t       cond;
    //维护本条件的各个变量
}var = {PTHREAD_MUTEX_INITIALIZER,PTHREAD_COND_INITIALIZER,...}

pthread_mutex_lock(&var.mutex);
设置条件为真
pthread_cond_signal(&var.cond);
pthread_mutex_unlock(&var.mutex);

测试条件并进入睡眠以等待条件变为真的代码大体如下:

pthread_mutex_lock(&var.mutex);
while(条件为假)
   pthread_cond_wait(&var.cond,&var.mutex);
修改条件
pthread_mutex_unlock(&var.mutex);

 2.2定时等待和广播

  通常pthread_cond_signal只是唤醒等待在相应条件变量上的一个线程,在某些情况下需要唤醒多个线程(例如读写者问题),可以调用pthread_cond_broadcast唤醒阻塞在相应条件变量上的所有线程。pthread_cond_timewait允许线程就阻塞时间设置一个限制值。API如下:

pthread_cond_broadcast(pthread_cond_t *cond);

pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex, const struct timespec *abstime);

 

你可能感兴趣的:(变量)