Introsort(内观排序)

.NET 4.5 这个版本的Array.Sort更改了STL的内观排序算法,那相对于快速排序内观排序到底有什么优化过的呢?

根据维基百科所说,这个排序算法首先从快速排序开始,当递归深度超过一定深度(深度为排序元素数量的对数值)后转为堆排序。

采用这个方法,Introsort既能在常规数据集上实现快速排序的高性能,又能在最坏情况下仍保持 O(N log N) 的时间复杂度。

由于这两种算法都属于比较排序算法,所以Introsort也是一个比较排序算法。

按我的理解可以说是快速排序+插入排序+堆排序的混合方式;

优化过的快速排序:

private static void IntroSort<T>(T[] array, int low, int height,
    int depthLimit, IComparer<T> comparer, bool desc = false) {
    while (height > low) {
        int partitionSize = height - low + 1;

        //判断区间长度少于等于16时候不再使用快速排序提升效率
        if (partitionSize <= IntrosortSizeThreshold) {
            if (partitionSize == 1) {
                return;
            }
            if (partitionSize == 2) {
                //长度为2的时候直接左右尝试交换
                if (desc) {
                    SwapIfLessthan(array, low, height, comparer);
                } else {
                    SwapIfGreater(array, low, height, comparer);
                }
                return;
            }
            if (partitionSize == 3) {
                //长度为3时候,三数取中分割法
                if (desc) {
                    SwapMed3ByLessthan(array, low, height, height - 1, comparer);
                } else {
                    SwapMed3(array, low, height, height - 1, comparer);
                }
                return;
            }

            //使用插入排序算法
            InsertionSort(array, low, height, desc);
            return;
        }
        if (depthLimit == 0) {
            HeapSort(array, low, height, desc);
            return;
        }
        depthLimit--;
        //pivotpos划分后的基准记录的位置
        //对R[low..high]做划分
        int pivotpos = PickPivotAndPartition(array, low, height, comparer, desc);
        //对右区间递归排序
        IntroSort(array, pivotpos + 1, height, depthLimit, comparer, desc);
        //对左区间递归排序 因为有个while所以不需要递归,相当于QuickSort(array,low,pivotpos-1);
        height = pivotpos - 1;
    }
}
View Code

1.利用基于三中值分区的中枢值来做快排

        //分治法:三数取中分割法
        private static int PickPivotAndPartition<T>(T[] keys, int lo, int hi,
            IComparer<T> comparer, bool desc) {
            //用区间中位记录作为基准
            int median =  GetMedian(lo, hi);

            //采取keys[lo],keys[median],keys[hi]三者之中的那个第二大的元素为主元时
            //便能尽最大限度保证快速排序算法不会出现O(N^2)的最坏情况
            if (desc) {
                SwapMed3ByLessthan(keys, lo, hi, median, comparer);
            } else {
                SwapMed3(keys, lo, hi, median, comparer);
            }

            //基准
            T pivot = keys[median];

            //注意:hi-1是因为上面的三数取中算法已经做了低位和高位比较,
            //所以这里获取hi-1(前一个比较),下面的高位实际是高位前一个位置

            //尝试中间和高位交换
            Swap(keys, median, hi - 1);

            int left = lo;
            //这里意义是为了下面--right使用,
            //如果数组是5开始递减应该是3开始,
            //因为Swap(keys, median, hi - 1);
            //已经做了比较减少一位
            int right = hi - 1;

            //从区间两端交替向中间扫描,直至left=right为止
            while (left < right) {
                if (desc) {
                    //left左边的元素大于pivot,right右边的元素都小于pivot
                    //线性时间的原地划分,只扫描数组一次就能完成

                    //使用++left为了跳过第一位,因为上面已经坐了三数取中
                    //从左向右扫描实,左边的元素比基准大,遇到小于pivot时候停止
                    while (comparer.Compare(keys[++left], pivot) > 0) ;

                    //从右向左扫描,右边的元素比基准小,遇到大于pivot时候停止
                    while (comparer.Compare(keys[--right], pivot) < 0) ;
                } else {
                    //left左边的元素小于pivot,right右边的元素都大于pivot
                    //线性时间的原地划分,只扫描数组一次就能完成

                    //使用++left为了跳过第一位,因为上面已经坐了三数取中
                    //从左向右扫描实,左边的元素比基准小,遇到大于pivot时候停止
                    while (comparer.Compare(keys[++left], pivot) < 0) ;

                    //从右向左扫描,右边的元素比基准大,遇到小于pivot时候停止
                    while (comparer.Compare(keys[--right], pivot) > 0) ;
                }

                //左右碰撞退出扫描,准备下次递归
                if (left >= right) break;

                //进行交换
                Swap(keys, left, right);
            }

            //pivot 上面做了Swap(keys, median, hi - 1); 
            //中位和高位比较,所以这里需要基准位置left和高位(hi - 1 同上)交换,
            //因为上面循环的--right已经跳过比较。
            Swap(keys, left, hi - 1);

            //基准记录已被最后定位
            return left;
        }
View Code

2.设定一个使用切分时数组长度的最小值,如果小于这个值,就使用插入排序(这个最小值根据经验给定,一般设定为16)

//判断区间长度少于等于16时候不再使用快读排序提升效率
if (partitionSize <= IntrosortSizeThreshold) {
    if (partitionSize == 1) {
        return;
    }
    if (partitionSize == 2) {
        //长度为2的时候直接左右尝试交换
        if (desc) {
            SwapIfLessthan(array, low, height, comparer);
        } else {
            SwapIfGreater(array, low, height, comparer);
        }
        return;
    }
    if (partitionSize == 3) {
        //长度为3时候,三数取中分割法
        if (desc) {
            SwapMed3ByLessthan(array, low, height, height - 1, comparer);
        } else {
            SwapMed3(array, low, height, height - 1, comparer);
        }
        return;
    }

    //使用插入排序算法
    InsertionSort(array, low, height, desc);
    return;
}
View Code

3.监视快排的递归深度,以确保高效的处理。如果快排递归深度超过log(n)级,那么内观排序切换到堆排序

 if (depthLimit == 0) {
     HeapSort(array, low, height, desc);
     return;
 }
     depthLimit--;
View Code

源代码下载

你可能感兴趣的:(sort)