基于Monte Carlo方法的2048 A.I.

2048 A.I. 在 stackoverflow 上有个讨论:http://stackoverflow.com/questions/22342854/what-is-the-optimal-algorithm-for-the-game-2048

得票最高的回答是基于 Min-Max-Tree + alpha beta 剪枝,启发函数的设计很优秀。

其实也可以不用设计启发函数就写出 A.I. 的,我用的方法是围棋 A.I. 领域的经典算法——Monte Carlo 局面评估 + UCT 搜索。

算法的介绍见我几年前写的一篇博文:http://www.cnblogs.com/qswang/archive/2011/08/28/2360489.html

简而言之就两点:

  1. 通过随机游戏评估给定局面的得分;
  2. 从博弈树的父节点往下选择子节点时,综合考虑子节点的历史得分与尝试次数。

针对2048游戏,我对算法做了一个改动——把 Minx-Max-Tree 改为 Random-Max-Tree,因为增加数字是随机的,而不是理性的博弈方,所以猜想 Min-Max-Tree 容易倾向过分保守的博弈策略,而不敢追求更大的成果。

UCT搜索的代码:

Orientation UctPlayer::NextMove(const FullBoard& full_board) const {
  int mc_count = 0;
  while (mc_count < kMonteCarloGameCount) {
    FullBoard current_node;
    Orientation orientation = MaxUcbMove(full_board);
    current_node.Copy(full_board);
    current_node.PlayMovingMove(orientation);
    NewProfit(&current_node, &mc_count);
  }

  return BestChild(full_board);
}

NewProfit函数用于更新该节点到某叶子节点的记录,是递归实现的:

float UctPlayer::NewProfit(board::FullBoard *node,
    int* mc_count) const {
  float result;
  HashKey hash_key = node->ZobristHash();
  auto iterator = transposition_table_.find(hash_key);
  if (iterator == transposition_table_.end()) {
    FullBoard copied_node;
    copied_node.Copy(*node);
    MonteCarloGame game(move(copied_node));

    if (!HasGameEnded(*node)) game.Run();

    result = GetProfit(game.GetFullBoard());
    ++(*mc_count);
    NodeRecord node_record(1, result);
    transposition_table_.insert(make_pair(hash_key, node_record));
  } else {
    NodeRecord *node_record = &(iterator->second);
    int visited_times = node_record->VisitedTimes();
    if (HasGameEnded(*node)) {
      ++(*mc_count);
      result = node_record->AverageProfit();
    } else {
      AddingNumberRandomlyPlayer player;
      AddingNumberMove move = player.NextMove(*node);
      node->PlayAddingNumberMove(move);
      Orientation max_ucb_move = MaxUcbMove(*node);
      node->PlayMovingMove(max_ucb_move);
      result = NewProfit(node, mc_count);
      float previous_profit = node_record->AverageProfit();
      float average_profit = (previous_profit * visited_times + result) /
          (visited_times + 1);
      node_record->SetAverageProfit(average_profit);
    }

    node_record->SetVisitedTimes(visited_times + 1);
  }

  return result;
}

起初用结局的最大数字作为得分,后来发现当跑到512后,Monte Carlo棋局的结果并不会出现更大的数字,各个节点变得没有区别。于是作了改进,把移动次数作为得分,大为改善。

整个程序的设计分为 board、player、game 三大模块,board 负责棋盘逻辑,player 负责移动或增加数字的逻辑,game把board和player连起来。

Game类的声明如下:

class Game {
public:
  typedef std::unique_ptr<player::AddingNumberPlayer>
  AddingNumberPlayerUniquePtr;
  typedef std::unique_ptr<player::MovingPlayer> MovingPlayerUniquePtr;

  Game(Game &&game) = default;

  virtual ~Game();

  const board::FullBoard& GetFullBoard() const {
    return full_board_;
  }

  void Run();

protected:
  Game(board::FullBoard &&full_board,
      AddingNumberPlayerUniquePtr &&adding_number_player,
      MovingPlayerUniquePtr &&moving_player);

  virtual void BeforeAddNumber() const {
  }

  virtual void BeforeMove() const {
  }

private:
  board::FullBoard full_board_;
  AddingNumberPlayerUniquePtr adding_number_player_unique_ptr_;
  MovingPlayerUniquePtr moving_player_unique_ptr_;

  DISALLOW_COPY_AND_ASSIGN(Game);
};

Run函数的实现:

void Game::Run() {
  while (!HasGameEnded(full_board_)) {
    if (full_board_.LastForce() == Force::kMoving) {
      BeforeAddNumber();

      AddingNumberMove
      move = adding_number_player_unique_ptr_->NextMove(full_board_);
      full_board_.PlayAddingNumberMove(move);
    } else {
      BeforeMove();

      Orientation orientation =
          moving_player_unique_ptr_->NextMove(full_board_);
      full_board_.PlayMovingMove(orientation);
    }
  }
}

这样就可以通过继承 Game 类,实现不同的构造函数,组合出不同的 Game,比如 MonteCarloGame 的构造函数:

MonteCarloGame::MonteCarloGame(FullBoard &&full_board) :
    Game(move(full_board),
    std::move(Game::AddingNumberPlayerUniquePtr(
    new AddingNumberRandomlyPlayer)),
    std::move(Game::MovingPlayerUniquePtr(new MovingRandomlyPlayer))) {}

一个新的2048棋局,会先放上两个数字,新棋局应该能方便地build。默认应该随机地增加两个数字,builder 类可以这么写:

template<class G>
class NewGameBuilder {
public:
  NewGameBuilder();
  ~NewGameBuilder() = default;

  NewGameBuilder& SetLastForce(board::Force last_force);

  NewGameBuilder& SetAddingNumberPlayer(game::Game::AddingNumberPlayerUniquePtr
      &&initialization_player);

  G Build() const;

private:
  game::Game::AddingNumberPlayerUniquePtr initialization_player_;
};

template<class G>
NewGameBuilder<G>::NewGameBuilder() :
    initialization_player_(game::Game::AddingNumberPlayerUniquePtr(
    new player::AddingNumberRandomlyPlayer)) {
}

template<class G>
NewGameBuilder<G>& NewGameBuilder<G>::SetAddingNumberPlayer(
    game::Game::AddingNumberPlayerUniquePtr &&initialization_player) {
  initialization_player_ = std::move(initialization_player);
  return *this;
}

template<class G>
G NewGameBuilder<G>::Build() const {
  board::FullBoard full_board;

  for (int i = 0; i < 2; ++i) {
    board::AddingNumberMove move = initialization_player_->NextMove(full_board);
    full_board.PlayAddingNumberMove(move);
  }

  return G(std::move(full_board));
}

很久以前,高效的 C++ 代码不提倡在函数中 return 静态分配内存的对象,现在有了右值引用就方便多了。

main 函数:

int main() {
  InitLogConfig();
  AutoGame game = NewGameBuilder<AutoGame>().Build();
  game.Run();
}

./fool2048:

 

基于Monte Carlo方法的2048 A.I._第1张图片

这个A.I.的移动不像基于人为设置启发函数的A.I.那么有规则,不会把最大的数字固定在角落,但最后也能有相对不错的结果,游戏过程更具观赏性~

项目地址:https://github.com/chncwang/fool2048

最后发个招聘链接:http://www.kujiale.com/about/join

我这块的工作主要是站内搜索、推荐算法等,欢迎牛人投简历到hr邮箱~

你可能感兴趣的:(方法)