- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型
机器不会学习CL
智能优化算法时间序列预测支持向量机matlab算法
时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基础模型文章目录一、基本原理1.问题定义2.数据准备3.SVM模型构建4.粒子群优化(PSO)5.优化与模型训练6.模型评估与预测7.流程总结8.MATLAB实现概述二、实验结果三、核心代码四、代码获取五、总结时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基
- 【ML】支持向量机SVM及Python实现(详细)
2401_84009698
程序员支持向量机python算法
fromsklearn.preprocessingimportStandardScalerfrommatplotlib.colorsimportListedColormapfromsklearn.svmimportSVC###2.1加载数据样本加载样本数据及其分类标签iris=datasets.load_iris()X=iris.data[:,[2,3]]#按花瓣划分#X=iris.data[:,
- 鸿蒙原生开发——轻内核A核源码分析系列三 物理内存(2)
OpenHarmony_小贾
鸿蒙开发HarmonyOSOpenHarmonyharmonyosopenharmony移动开发程序人生鸿蒙开发
3.1.2.3函数OsVmPhysLargeAlloc当执行到这个函数时,说明空闲链表上的单个内存页节点的大小已经不能满足要求,超过了第9个链表上的内存页节点的大小了。⑴处计算需要申请的内存大小。⑵从最大的链表上进行遍历每一个内存页节点。⑶根据每个内存页的开始内存地址,计算需要的内存的结束地址,如果超过内存段的大小,则继续遍历下一个内存页节点。⑷处此时paStart表示当前内存页的结束地址,接下来
- 鸿蒙轻内核A核源码分析系列四(3) 虚拟内存
OpenHarmony_小贾
OpenHarmonyHarmonyOS鸿蒙开发harmonyosOpenHarmony鸿蒙内核移动开发驱动开发系统开发
4.2函数LOS_RegionAlloc函数LOS_RegionAlloc用于从地址空间中申请空闲的虚拟地址区间。参数较多,LosVmSpace*vmSpace指定虚拟地址空间,VADDR_Tvaddr指定虚拟地址,当为空时,从映射区申请虚拟地址;当不为空时,使用该虚拟地址。如果该虚拟地址已经被映射,会先相应的解除映射处理等。size_tlen指定要申请的地区区间的长度。UINT32regionF
- Django Admin管理后台导入CSV
背着吉他去流浪
django服务器python
修改管理模型,代码如下:classCsvImportForm(forms.Form):csv_file=forms.FileField()@admin.register(Hero)classHeroAdmin(admin.ModelAdmin,ExportCsvMixin):...change_list_template="entities/heroes_changelist.html"defge
- TEE是Trusted Execution Environment 的解释
weixin_38503885
TEE是TrustedExecutionEnvironment的缩写简称,是可信执行环境的简称,在目前移动安全领域,TEE默认就是指的基于ARMtrustzone技术的TEE,其实在芯片架构层面,TEE应该包含下面三部分:1.利用intelTXT或AMD的SVM均可提供TEE,即基于处理器CPU的特殊指令,提供动态信任根DRTM服务,为敏感应用或数据提供可信执行环境;2.利用ARMTrustZon
- AI模型:追求全能还是专精?
Lill_bin
杂谈人工智能分布式zookeeper机器学习游戏
AI模型简介人工智能(AI)模型是人工智能系统的核心,它们是经过训练的算法,能够执行特定的任务,如图像识别、自然语言处理、游戏玩法、预测分析等。AI模型的类型很多,可以根据其功能和应用场景进行分类。常见的AI模型类型包括:监督学习模型:这些模型通过训练数据集学习,数据集中包含了输入和对应的输出标签。例子包括决策树、支持向量机(SVM)、神经网络等。无监督学习模型:这些模型处理没有标签的数据,目的是
- 分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出
机器不会学习CL
分类预测智能优化算法分类支持向量机matlab
分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM多特征输入多类别输出文章目录一、基本原理1.最小二乘支持向量机(LSSVM)LSSVM的基本步骤:2.鲸鱼优化算法(WOA)WOA的基本步骤:3.WOA-LSSVM的结合流程结合的流程如下:总结二、实验结果三、核心代码四、代码获取五、总结分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的
- 【HarmonyOS NEXT应用开发】案例103:基于JSVM创建引擎执行JS代码并销毁
青少年编程作品集
javascriptmicrosoft开发语言华为云harmonyos华为华为od
场景描述通过JSVM,可以在应用运行期间直接执行一段动态加载的JS代码。也可以选择将一些对性能、底层系统调用有较高要求的核心功能用C/C++实现并将C++方法注册到JS侧,在JS代码中直接调用,提高应用的执行效率。功能描述通过createJsCore方法来创建一个新的JS基础运行时环境,并通过该方法获得一个虚拟机ID,通过evalUateJS方法使用虚拟机ID对应的运行环境来运行JS代码,在JS代
- 自然语言处理系列五十》文本分类算法》SVM支持向量机算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能算法自然语言处理分类nlpai人工智能chatgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机》代码实战总结自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机在文本分类的应用场景中,相比其他机器学习算法有更好的效果。下面介绍其原理,并用SparkMLlib机器
- 鸿蒙(API 12 Beta2版)NDK开发【JSVM-API简介】
移动开发技术栈
鸿蒙开发harmonyos华为鸿蒙系统鸿蒙NDK模块加载jsvm
JSVM-API简介场景介绍HarmonyOSJSVM-API是基于标准JS引擎提供的一套稳定的ABI,为开发者提供了较为完整的JS引擎能力,包括创建和销毁引擎,执行JS代码,JS/C++交互等关键能力。通过JSVM-API,开发者可以在应用运行期间直接执行一段动态加载的JS代码。也可以选择将一些对性能、底层系统调用有较高要求的核心功能用C/C++实现并将C++方法注册到JS侧,在JS代码中直接调
- HarmonyOS开发规范:JSVM-API接口总结
冲浪王子_浪浪
HarmonyOSOpenHarmony鸿蒙开发前端鸿蒙华为harmonyoshtml移动开发鸿蒙系统
JSVM_Status是一个枚举数据类型,表示JSVM-API接口返回的状态信息。每当调用一个JSVM-API函数,都会返回该值,表示操作成功与否的相关信息。typedefenum{JSVM_OK,JSVM_INVALID_ARG,JSVM_OBJECT_EXPECTED,JSVM_STRING_EXPECTED,JSVM_NAME_EXPECTED,JSVM_FUNCTION_EXPECTED,
- 每天一个数据分析题(五百一十二)- 数据标准化
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在完整的机器学习流程中,数据标准化(DataStandardization)一直是一项重要的处理流程。不同模型对于数据是否标准化的敏感程度不同,以下哪个模型对变量是否标准化不敏感?A.决策树B.KNNC.K-MeansD.SVM数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,S
- 回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序 CNN-WOA-LSSVM
机器不会学习CL
回归预测智能优化算法回归cnn支持向量机
回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSVM文章目录一、基本原理1.数据预处理2.特征提取(CNN)3.参数优化(WOA)4.模型训练(LSSVM)5.模型评估和优化6.预测总结二、实验结果三、核心代码四、代码获取五、总结回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSV
- 机器学习:svm算法原理的优缺点和适应场景
夜清寒风
支持向量机算法机器学习
1、概述:基本原理:间隔(Margin):SVM试图找到一个超平面,这个超平面不仅能够区分不同的类别,而且具有最大的间隔。间隔是数据点到超平面的最近距离。支持向量(SupportVectors):这些是距离超平面最近的数据点,它们决定了超平面的位置和方向。支持向量机(SVM)是一种在机器学习领域广泛使用的监督学习模型,它通过找到数据点之间的最优超平面来进行分类或回归分析。以下是SVM算法的一些优缺
- 深度学习速通系列:贝叶思&SVM
Ven%
支持向量机人工智能深度学习算法机器学习
贝叶斯(Bayesian)方法和支持向量机(SVM,SupportVectorMachine)是两种不同的机器学习算法,它们在解决分类和回归问题时有着不同的原理和应用场景贝叶斯方法:贝叶斯方法基于贝叶斯定理,这是一种利用已知信息(先验概率)来预测未知事件(后验概率)的概率方法。它通常用于分类问题,特别是当数据集较小或存在类别不平衡时。贝叶斯方法可以处理不确定性,并且可以通过增加新的数据来更新先验概
- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 使用SVM进行评论情感分析
github_czy
支持向量机机器学习人工智能
importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.svmimportSVCfromsklearn.metricsimportaccuracy_score,precision_score
- 智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序 【优化算法可以替换成其他优化方法】
机器不会学习CL
智能优化算法智能优化特征选择算法支持向量机matlab
智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】文章目录一、PO基本原理基本原理基本流程示例应用二、实验结果三、核心代码四、代码获取五、总结智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】一、PO基本原理鹦鹉
- KVM虚拟机命令行常用操作
文静小土豆
linux运维redis
1,首先验证CPU是否支持虚拟化,输入有vmx或svm就支持,支持虚拟化则就支持KVMcat/proc/cpuinfo|egrep'vmx|svm'2,查看KVM模块是否加载lsmod|grepkvm#kvm_intel1700860#kvm5663401kvm_intel#irqbypass135031kvm3,安装KVM虚拟机yum-yinstallqemu-kvmqemu-imglibvir
- 回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM 多特征输入单输出 高引用先用先创新
机器不会学习CL
回归预测智能优化算法回归支持向量机matlab
回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM多特征输入单输出高引用先用先创新文章目录前言回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM多特征输入单输出高引用先用先创新一、NGO-SVM模型1.北方苍鹰优化算法(NGO)的原理2.支持向量机(SVM)的原理3.NGO-SVM回归预测模型的结合总结二、实验结果三、核心代码四、代码获取
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- IDEA快捷键
糯米小麻花啊
intellij-ideajavaide
自动代码查询快捷键其他快捷键调试快捷键重构十大IntellijIDEA快捷键1智能提示2重构3代码生成4编辑5查找打开6其他辅助自动代码常用的有fori/sout/psvm+Tab即可生成循环、System.out、main方法等boilerplate样板代码。例如要输入for(Useruser:users)只需输入user.for+Tab;再比如,要输入Datebirthday=user.get
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 【机器学习】支持向量机 | 支持向量机理论全梳理 对偶问题转换,核方法,软间隔与过拟合
Qodicat
支持向量机机器学习算法
支持向量机走的路和之前介绍的模型不同之前介绍的模型更趋向于进行函数的拟合,而支持向量机属于直接分割得到我们最后要求的内容1支持向量机SVM基本原理当我们要用一条线(或平面、超平面)将不同类别的点分开时,我们希望这条线尽可能地远离最靠近它的点。这些最靠近线的点被称为支持向量。而这条线到最靠近它的点的距离被称为间隔。支持向量机就是要找到一个最大间隔的线(或平面、超平面),这样可以更好地区分不同类别的点
- MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
电力程序小学童
机器预测matlab神经网络分类预测
目录主要内容部分代码结果一览下载链接主要内容《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析
- 05基于卷积神经网络-支持向量机(自动寻优)CNN-SVM数据分类算法
机器不会学习CSJ
cnn支持向量机分类人工智能
CNN原理卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛用于计算机视觉领域。CNN的核心思想是通过卷积层和池化层来自动提取图像中的特征,从而实现对图像的高效处理和识别。在传统的机器学习方法中,图像特征的提取通常需要手工设计的特征提取器,如SIFT、HOG等。而CNN则可以自动从数据中学习到特征表示。这是因为CNN模型的卷积层使用了一系列的卷积核
- 基于生物地理学算法优化卷积神经网络结合支持向量机BBO-CNN-SVM实现瓦斯数据回归预测附Matlab代码
天天Matlab代码科研顾问
预测模型算法cnn支持向量机
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要:瓦斯数据回归预测是煤矿安全生产的重要环节,对煤矿瓦斯治理具有重要意义。本文提出了一种基于生物地理
- 在ubuntu20.04 上配置 qemu/kvm linux kernel调试环境
黑不溜秋的
图形驱动专栏linux
一:安装qemu/kvm和virshqemu/kvm是虚拟机软件,virsh是管理虚拟机的命令行工具,可以使用virsh创建,编辑,启动,停止,删除虚拟机。(1):安装之前,先确认CPU是否支持虚拟化技术,使用egrep'(svm|vmx)'/proc/cupinfo查看,如果有vmx或svm的输出,则说明是支持的。(2):安装之前,检查BIOS中是否禁用了虚拟化支持,使用下面命令检查:sudoa
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi