- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- python编写mapreduce job教程
weixin_49526058
pythonmapreducehadoop
在Python中实现MapReduce作业,通常可以使用mrjob库,这是一个用于编写和执行MapReduce作业的Python库。它可以运行在本地模式或Hadoop集群上。以下是一个简单的MapReduce示例,它计算文本文件中每个单词的出现次数。安装mrjob首先,你需要安装mrjob库。可以通过pip安装:pipinstallmrjobMapReduce示例:计算单词频率1.创建一个MapR
- 数据驱动业务增长,E-MapReduce 真实案例解析
Anna_Tong
mapreduce大数据云计算数据分析阿里云实时计算数据驱动
在大数据时代,数据已经成为企业核心竞争力的关键因素之一。无论是电商、金融、物流还是制造业,企业都在探索如何更高效地处理、分析和利用海量数据,以实现精准决策、优化运营并提升业务增长。然而,面对PB级甚至EB级的数据规模,传统的本地大数据计算架构往往难以满足性能和成本的要求。如何在保证计算效率的同时降低运维成本,成为企业数据战略中的关键挑战。阿里云E-MapReduce(EMR)作为一款云原生的大数据
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- 腾讯云大数据套件TBDS与阿里云大数据能力产品对比
奋力向前123
数据库java人工智能腾讯云大数据阿里云
前言博主在接触大数据方向研究的时候是在2016年,那时候正是大数据概念非常火热的一个时间段,最著名的Google的3篇论文。GoogleFS、MapReduce、BigTable,奠定了大数据框架产品的基础。Google文件系统,计算框架和存储框架。往后所有的大数据产品和过程域无一不是在三个模块的基础上进行搭建,迭代,完善。我们最开始使用的都是开源的产品,比如hadoop,HDSF,MAPRedu
- hadoop 1.0 基本概念了解
fenggfa
hadoophadoop大数据mapreduce
hadoop基本概念了解common:hadoop组件公共常用工具类Avro:Avro是用于数据序列化的系统。不同机器之间数据交流的保障。MapReduce:MapReduce是一种编程模型,分为Map函数和Reduce函数。Map函数负责将输入数据转化为中间值,中间值再通过Reduce函数转化成输出数据HDFS:HDFS是一个分布式文件系统。通过一次写入,多次读出来实现。Chukwa:Chukw
- 深入理解Hadoop 1.0.0源码架构及组件实现
隔壁王医生
本文还有配套的精品资源,点击获取简介:Hadoop1.0.0作为大数据处理的开源框架,在业界有广泛应用。该版本包含核心分布式文件系统HDFS、MapReduce计算模型、Common工具库等关键组件。通过分析源码,可深入理解这些组件的设计和实现细节,包括数据复制、任务调度、容错机制以及系统配置管理。本课程旨在指导学生和开发者深入学习Hadoop的核心原理和实践应用,为其在大数据领域的进一步研究和开
- hadoop之MapReduce:片和块
哒啵Q297
hadoopmapreduce大数据
假如我现在500M这样的数据,如何存储?500M=128M+128M+128M+116M分为四个块进行存储。计算的时候,是按照片儿计算的,而不是块儿。块是物理概念,一个块就是128M,妥妥的,毋庸置疑。片是逻辑概念,一个片大约等于一个块。假如我现在需要计算一个300M的文件,这个时候启动多少个MapTask任务?答案是有多少个片儿,就启动多少个任务。一个片儿约等于一个块,但是最大可以128M*1.
- Hadoop智能房屋推荐系统 爬虫1w+ 协同过滤余弦函数推荐 代码+视频教程+文档
小盼江
课题设计Hadoop课设hadoop爬虫大数据
Hadoop智能房屋推荐系统爬虫1w+协同过滤余弦函数推荐带视频教程毕设设计课题设计【Hadoop项目】1.data.csv上传到hadoop集群环境2.data.csv数据清洗3.MapReducer数据汇总处理,将Reducer的结果数据保存到本地Mysql数据库中4.Springboot+Echarts+MySQL显示数据分析结果分析数据维度如下:【房屋分类热度】【各分类下房屋数量及占比】【
- Hadoop解决数据倾斜方法?思维导图 代码示例(java 架构)
用心去追梦
hadoopjava架构
数据倾斜(DataSkew)是分布式计算框架中常见的问题,特别是在MapReduce作业里。当某些Mapper或Reducer处理的数据量远大于其他节点时,就会导致整体任务执行时间延长,并且资源利用率不均衡。为了解决这个问题,Hadoop提供了多种策略和技术手段来优化数据分布和任务分配。以下是关于Hadoop解决数据倾斜的方法总结、思维导图描述以及Java代码示例。Hadoop解决数据倾斜方法概述
- MapReduce是什么?
头发那是一根不剩了
mapreduce大数据
MapReduce是一种编程模型,最初由Google提出,旨在处理大规模数据集。它是分布式计算的一个重要概念,通常用于处理海量数据并进行并行计算。MapReduce的基本思想是将计算任务分解为两个阶段:Map阶段和Reduce阶段。Map阶段:在这个阶段,输入的数据会被拆分成多个片段,每个片段会被分配给不同的计算节点(也叫做“Mapper”)。每个Mapper处理一部分数据并输出键值对(key-v
- MapReduce简单应用(二)——去重、排序和平均
梦醒沉醉
Hadoopmapreduce大数据
目录1.数据去重1.1原理1.2pom.xml中依赖配置1.3工具类util1.4去重代码1.5结果2.数据排序2.1原理2.2排序代码2.3结果3.计算均值3.1原理3.2自定义序列化数据类型DecimalWritable3.3计算平均值3.4结果参考1.数据去重 待去重的两个文本内容如下。2012-3-1a2012-3-2b2012-3-3c2012-3-4d2012-3-5a2012-3-
- 【MapReduce】分布式计算框架MapReduce
桥路丶
大数据Hadoop快速入门bigdata
分布式计算框架MapReduce什么是MapReduce?MapReduce起源是2004年10月Google发表了MapReduce论文,之后由MikeCafarella在Nutch(爬虫项目)中实现了MapReduce的功能。它的设计初衷是解决搜索引擎中大规模网页数据的并行处理问题,之后成为ApacheHadoop的核心子项目。它是一个面向批处理的分布式计算框架;在分布式环境中,MapRedu
- Hive自定义UDF函数
浊酒南街
#大数据系列三hiveUDF
目录一、UDF概述二、UDF种类三、如何自定义UDF四、自定义实现UDF和UDTF一、JSONObject解析JSON对象二、JSONArray解析JSON数组对象三、两个UDF的配合使用过程一、UDF概述UDF全称:User-DefinedFunctions,即用户自定义函数,在HiveSQL编译成MapReduce任务时,执行java方法,类似于像MapReduce执行过程中加入一个插件,方便
- MapReduce的代码编写
hjy1821
MapReduceMapReduce代码WordCount字数统计代码MapReduce编写MapReduce使用案例
MapReduce用例代码的编写流程1)函数入口①首先创建配置对象Configuration,用于加载配置文件的信息;②创建一个Job对象,通过getInstance()函数设置当前main函数所在的类,设置后运行代码可以找到函数的入口;③设置MapReduce的输入输出路径用于输入数据和输出计算的数据结果;注意若要是输出的路径在集群中已经存在,需要操作HDFS进行判断与删除,在此处要建立一个HD
- 一文了解mapreduce及工作原理
TEL浅笑嫣然
openstack大数据hadoop笔记
目录前言-MR概述1.HadoopMapReduce设计思想及优缺点设计思想优点:缺点:2.HadoopMapReduce核心思想3.MapReduce工作机制剖析MapReduce运行机制过程描述第一阶段:作业提交(图1-4步)第二阶段:作业初始化(图5-7步)第三阶段:任务的分配(图8)第四阶段:任务的执行(图9-11)第五阶段:作业完成Tips知识点:进度和状态更新4.MR各组成部分工作机制
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- Hbase基础
yandao
hadoophbasebigdatahadoop
1.HBase简介HBASE理论HBase是一个基于Hadoop的分布式、面向列的开源数据库,对大数据实现了随机定位和实时读写。HBase是基于Google的Bigtable技术实现的,GoogleBigtable利用GFS作为其文件存储系统,HBase利用Hadoop的HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase利用Hadoop的M
- nginx+flume网络流量日志实时数据分析实战_日志数据分析(1)
2401_84182578
程序员nginxflume数据分析
得到visits模型hadoopjar/export/data/mapreduce/web_log.jarcn.itcast.bigdata.weblog.clickstream.ClickStreamVisit网络日志数据分析-数据加载对于日志数据的分析,Hive也分为三层:ods层、dw层、app层创建数据库createdatabaseifnotexistsweb_log_ods;create
- 如何处理大规模数据集中的数据处理:Spark和ApacheFlink
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明数据处理(DataProcessing)任务调度(TaskScheduling)HadoopApacheSparkApacheFlink3.核心算法原理和具体操作步骤以及数学公式讲解1.MapReduce(1)概述(2)算法原理分布式文件系统Map阶段Shuffle阶段Reduce阶段MapReduce的流程示意图Map阶段Shuffle阶段Reduce阶段执行
- HIVE常见面试题
兔子宇航员0301
数据开发小白成长笔记hivehadoop数据仓库
1.简述hiveHive是一个构建在Hadoop之上的数据仓库工具,主要用于处理和查询存储在HDFS上的大规模数据。Hive通过将结构化的数据文件映射成表,并提供类SQL的查询功能,使得用户可以通过编写SQL语句来进行数据分析,而不需要编写复杂的MapReduce程序2.简述hive读写文件机制Hive读写文件机制主要依赖Hadoop的HDFS(分布式文件系统)和MapReduce(计算框架)。
- 使用python实现Hadoop中MapReduce
qq_44801116
Pythonpythonhadoopmapreduce
Hadoop包含HDFS(分布式文件系统)、YARN(资源管理器)、MapReduce(编程模型)。一、三大组件的简介(1)HDFS(HadoopDistributedFileSystem):HDFS是Hadoop的分布式文件系统,它是将大规模数据分散存储在多个节点上的基础。主要负责数据的存储和管理,可以将大数据集分成多个数据块,并将数据块分配到不同的计算节点上存储,提高数据的可靠性和处理效率。旨
- 【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
Want595
Python大数据采集与分析大数据pythonhadoop
编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell)搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn)本机PyCharm连接CentOS虚拟机在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了Hadoop+MapReduce+Yarn+Python
- Hadoop1.0和2.0的主要区别
web_15534274656
javahadoop大数据hdfsdubbojava-zookeeper
Hadoop1.0指的是版本为ApacheHadoop0.20.x、1.x或者CDH3系列的Hadoop,组件主要由HDFS和MapReduce两个系统组成,HDFS是一个分布式文件存储系统,MapReduce是一个离线处理框架,分为三部分,运行时环境为JobTracker和TaskTracker,编程模型为Map映射和Reduce规约,数据处理引擎为MapTask和ReduceTask,Hado
- Hadoop1.0-HDFS介绍
szjianzr
HADOOP介绍hadoopHDFS
Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统。最核心的模块包括HadoopCommon、HDFS与MapReduce。HDFS是Hadoop分布式文件系统(HadoopDistributedFileSystem)的缩写,为分布式计算存储提供了底层支持。采用Java语言开发,可以部署在多种普通的廉价机器上,以集群处理数量积达到大型主机处理性能。一、HDFS基本概念1、Bl
- 大数据相关开源项目汇总
万里浮云
大数据
调度与管理服务Azkaban是一款基于Java编写的任务调度系统任务调度,来自LinkedIn公司,用于管理他们的Hadoop批处理工作流。Azkaban根据工作的依赖性进行排序,提供友好的Web用户界面来维护和跟踪用户的工作流程。YARN是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,解决了旧MapReduce框架的性能瓶颈。它的基本思想是把资源
- 为什么我的CDH不用Hue,改用Scriptis了?
兔子那么可爱
大数据UI开源数据分析中间件
理性谈谈Hue的优缺点平时做数据开发用的比较多的是CDH的Hue,Hue提供了对接Hadoop平台的UI界面,可以对Hbase数据进行直接操作,执行Mapreducer任务时有可视化的执行界面,进行数据报表和Oozie定时任务,可以说还是非常的方便的。但是用久了就会发现Hue也有许多痛点。数据表不能直接方便地导出Excel,降低了工作效率UDF和函数支持较差,没有自带的数据分析常用UDF函数库,也
- Hadoop3.2.1安装-单机模式和伪分布式模式
花菜回锅肉
大数据hadoophdfs大数据linux
Hadoop入门篇概述Hadoop是使用Java编写的,是为了解决大数据场景下的两大问题,分布式存储和分布式处理而诞生的,包含很多组件、套件。需要运行在Linux系统下。主要包括HDFS和MapReduce两个组件。下载安装下载下载地址https://archive.apache.org/dist/hadoop/common/选择合适自己的tar.gz版本下载,该文档选择V3.2.1。Hadoop
- Hive重点面试题
Major Tom _
hivehadoop数据仓库
文章目录Hive面试重点题目及答案1.Hive的优缺点及使用场景2.Hive与数据仓库的区别3.Hive的基本架构与元数据存储4.Hive内外部表的区别及适用场景5.Hive数据倾斜原因与解决方法6.HiveMapReduce的底层实现与优化方式7.Hive窗口函数的使用场景8.Hive分区与分桶的区别9.Hive的存储格式10.Hive计算引擎(MapReduce,Tez,Spark)的对比Hi
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen