前面讲了C++继承并扩展C语言的传统类型转换方式,最后留下了一些关于指针和引用上的转换问题,没有做详细地讲述。C++相比于C是一门面向对象的语言,面向对象最大的特点之一就是具有“多态性(Polymorphism)”。
要想很好的使用多态性,就免不了要使用指针和引用,也免不了会碰到转换的问题,所以在这一篇,就把导师讲的以及在网上反复查阅了解的知识总结一下。
C++提供了四个转换运算符:
它们有着相同的结构,看起来像是模板方法。这些方法就是提供给开发者用来进行指针和引用的转换的。
其实我很早就想写这篇内容的,自己不断地查看导师发来的资料,也在网上不停地看相关的知识,却一直迟迟不能完全理解C++转换运算符的用法,倒是看了那些资料后先写了一篇传统转换方面的内容。虽然从字面上很好理解它们大致是什么作用,但是真正像使用起来,却用不知道他们具体的用途,只会不断的被编译器提醒Error。所以如果出现理解不到位或错误的地方,还希望前人或来者能够指正。
在我看来这些标准运算符的作用就是对传统运算符的代替,以便做到统一。就像我们用std::endl来输出换行,而不是'\n'。我会用代码来说明相应的传统转换可以如何这些标准运算符。当然,这这是大致的理解,在标准运算符上,编译器肯定有做更多的处理,特别是dynamic_cast是不能用传统转换方式来完全实现的。
在这一篇文章里,我会先讲讲我对const_cast运算符的理解。
const_cast转换符是用来移除变量的const或volatile限定符。对于后者,我不是太清楚,因为它涉及到了多线程的设计,而我在这方面没有什么了解。所以我只来说const方面的内容。
对于const变量,我们不能修改它的值,这是这个限定符最直接的表现。但是我们就是想违背它的限定希望修改其内容怎么办呢?
下边的代码显然是达不到目的的:const int constant = 10;
int modifier = constant;
因为对modifier的修改并不会影响到constant,这暗示了一点:const_cast转换符也不该用在对象数据上,因为这样的转换得到的两个变量/对象并没有相关性。
只有用指针或者引用,让变量指向同一个地址才是解决方案,可惜下边的代码在C++中也是编译不过的:const int constant = 21;
int* modifier = &constant
// Error: invalid conversion from 'const int*' to 'int*'
(上边的代码在C中是可以编译的,最多会得到一个warning,所在在C中上一步就可以开始对constant里面的数据胡作非为了)
把constant交给非const的引用也是不行的。const int constant = 21;
int& modifier = constant;
// Error: invalid initialization of reference of type 'int&' from expression of type 'const int'
于是const_cast就出来消灭const,以求引起程序世界的混乱。
下边的代码就顺利编译功过了:const int constant = 21;
const int* const_p = &constant;
int* modifier = const_cast<int*>(const_p);
*modifier = 7;
我说过标:准转换运算符是可以用传统转换方式实现的。const_cast实现原因就在于C++对于指针的转换是任意的,它不会检查类型,任何指针之间都可以进行互相转换,因此const_cast<int*>就可以直接使用显示转换(int*)来代替:const int constant = 21;
const int* const_p = &constant;
int* modifier = (int*)(const_p);
或者我们还可以把他们合成一个语句,跳过中间变量,用const int constant = 21;
int* modifier = (int*)(&constant);
替代const int constant = 21;
int* modifier = const_cast<int*>(&constant);
从前面代码中已经看到,我们不能对constant进行修改,但是我们可以对modifier进行重新赋值。
但是但是,程序世界真的混乱了吗?我们真的通过modifier修改了constatn的值了吗?修改const变量的数据真的是C++去const的目的吗?
如果我们把结果打印出来:cout << "constant: "<< constant <<endl;
cout << "const_p: "<< *const_p <<endl;
cout << "modifier: "<< *modifier <<endl;
/**
constant: 21
const_p: 7
modifier: 7
**/
constant还是保留了它原来的值。
可是它们的确指向了同一个地址呀:cout << "constant: "<< &constant <<endl;
cout << "const_p: "<< const_p <<endl;
cout << "modifier: "<< modifier <<endl;
/**
constant: 0x7fff5fbff72c
const_p: 0x7fff5fbff72c
modifier: 0x7fff5fbff72c
**/
这真是一件奇怪的事情,但是这是件好事:说明C++里是const,就是const,外界千变万变,我就不变。不然真的会乱套了,const也没有存在的意义了。
IBM的C++指南称呼“*modifier = 7;”为“未定义行为(Undefined Behavior)”。所谓未定义,是说这个语句在标准C++中没有明确的规定,由编译器来决定如何处理。
位运算的左移操作也可算一种未定义行为,因为我们不确定是逻辑左移,还是算数左移。
再比如下边的语句:v[i] = i++; 也是一种未定义行为,因为我们不知道是先做自增,还是先用来找数组中的位置。
对于未定义行为,我们所能做的所要做的就是避免出现这样的语句。对于const数据我们更要这样保证:绝对不对const数据进行重新赋值。
如果我们不想修改const变量的值,那我们又为什么要去const呢?
原因是,我们可能调用了一个参数不是const的函数,而我们要传进去的实际参数确实const的,但是我们知道这个函数是不会对参数做修改的。于是我们就需要使用const_cast去除const限定,以便函数能够接受这个实际参数。
#include <iostream>
using namespace std;
void Printer (int* val,string seperator = "\n")
{
cout << val<< seperator;
}
int main(void)
{
const int consatant = 20;
//Printer(consatant);//Error: invalid conversion from 'int' to 'int*'
Printer(const_cast<int *>(&consatant));
return 0;
}
出现这种情况的原因,可能是我们所调用的方法是别人写的。还有一种我能想到的原因,是出现在const对象想调用自身的非const方法的时候,因为在类定义中,const也可以作为函数重载的一个标示符。有机会,我会专门回顾一下我所知道const的用法,C++的const真的有太多可以说的了。
在IBM的C++指南中还提到了另一种可能需要去const的情况:
#include <iostream>
using namespace std;
int main(void) {
int variable = 21;
int* const_p = &variable;
int* modifier = const_cast<int*>(const_p);
*modifier = 7
cout << "variable:" << variable << endl;
return 0;
}
/** variable:7 **/
我们定义了一个非const的变量,但用带const限定的指针去指向它,在某一处我们突然又想修改了,可是我们手上只有指针,这时候我们可以去const来修改了。上边的代码结果也证实我们修改成功了。
不过我觉得这并不是一个好的设计,还是应该遵从这样的原则:使用const_cast去除const限定的目的绝对不是为了修改它的内容,只是出于无奈。(如果真像我说是种无奈,似乎const_cast就不太有用到的时候了,但的确我也很少用到它)