KIDx 的解题报告
题目链接:http://lightoj.com/volume_showproblem.php?problem=1170
题意:给a, b (1 <= a <= b <= 10^10),设a,b之间有n个完全数[x>1,y>1,使得m=x^y,则m为完全数],用这n个数作为结点,求这n个结点能形成多少种二叉树?
预处理:
i=1~10^5生成所有m放到dp[M]数组,然后从小到大排序,再去重复放到x[M]数组
卡特兰数:
生成后发现最多有d=10万多个完全数,那么只要生成n<=d个卡特兰数列存到ans[M]数组即可,当然就是用下面那个递推式了
乘法逆元:
x*y ≡ 1mod (mod),则称 x 是 y 对于mod的乘法逆元
分数取模就要用到了,因为上面递推式有分母i+1
要求(i+1)^-1 % mod = ?
就等价于i+1的逆元x%mod了
令y = i+1,x*y ≡ 1mod (mod) → x*y + k*mod == 1
用扩展欧几里德即可算出y的逆元x
扩展欧几里得:http://972169909-qq-com.iteye.com/blog/1140914
最后二分查找a,b之间有多少个完全数
#include <iostream> #include <algorithm> using namespace std; #define M 105005 #define LL long long LL dp[M], x[M], ans[M]; const LL maxs = 1e5, Maxs = 1e10; void Egcd (LL a, LL b, LL &x, LL &y) //扩展欧几里德 { if (b == 0) { x = 1; y = 0; return ; } Egcd (b, a%b, x, y); LL tp = x; x = y; y = tp - a/b*y; } int main () { int t, cc = 1, k = 0, d = 0, l, r, mid; LL tp, i, a, b, mod = 100000007; for (i = 2; i <= maxs; i++) { tp = i * i; while (tp <= Maxs) { dp[k++] = tp; tp *= i; } } sort (dp, dp+k); x[d++] = dp[0]; for (i = 1; i < k; i++) { if (dp[i] != dp[i-1]) x[d++] = dp[i]; } ans[0] = 0, ans[1] = 1; for (i = 2; i <= d; i++) { LL x, y; Egcd (i+1, mod, x, y); //求i+1的乘法逆元x ans[i] = ans[i-1]*(4*i-2)%mod * (x%mod+mod)%mod; } scanf ("%d", &t); while (t--) { scanf ("%lld%lld", &a, &b); l = 0, r = d; while (l < r) { mid = (l+r) >> 1; if (x[mid] >= a) r = mid; else l = mid + 1; } a = r; l = 0, r = d; while (l < r) { mid = (l+r) >> 1; if (x[mid] > b) r = mid; else l = mid + 1; } b = r; printf ("Case %d: %lld\n", cc++, ans[b-a]); } return 0; }