问题导读:
1.如何创建MR程序?
2.如何配置运行参数?
3.HADOOP_HOME为空会出现什么问题?
4.hadoop-common-2.2.0-bin-master/bin的作用是什么?
扩展:
4.winutils.exe是什么?
本文总结了两个例子,分别从不同角度。
一、eclipse中开发Hadoop2.x的Map/Reduce项目
本文演示如何在Eclipse中开发一个Map/Reduce项目:
1、环境说明
2、新建MR工程
依次点击 File → New → Ohter… 选择 “Map/Reduce Project”,然后输入项目名称:micmiu_MRDemo,创建新项目:
<ignore_js_op style="word-wrap: break-word;">
<ignore_js_op style="word-wrap: break-word;">
3、创建Mapper和Reducer
依次点击 File → New → Ohter… 选择Mapper,自动继承Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
<ignore_js_op style="word-wrap: break-word;">
<ignore_js_op style="word-wrap: break-word;">
创建Reducer的过程同Mapper,具体的业务逻辑自己实现即可。
本文就以官方自带的WordCount为例进行测试:
- package com.micmiu.mr;
- /**
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- import java.io.IOException;
- import java.util.StringTokenizer;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.util.GenericOptionsParser;
- public class WordCount {
- public static class TokenizerMapper
- extends Mapper<Object, Text, Text, IntWritable>{
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
- public void map(Object key, Text value, Context context
- ) throws IOException, InterruptedException {
- StringTokenizer itr = new StringTokenizer(value.toString());
- while (itr.hasMoreTokens()) {
- word.set(itr.nextToken());
- context.write(word, one);
- }
- }
- }
- public static class IntSumReducer
- extends Reducer<Text,IntWritable,Text,IntWritable> {
- private IntWritable result = new IntWritable();
- public void reduce(Text key, Iterable<IntWritable> values,
- Context context
- ) throws IOException, InterruptedException {
- int sum = 0;
- for (IntWritable val : values) {
- sum += val.get();
- }
- result.set(sum);
- context.write(key, result);
- }
- }
- public static void main(String[] args) throws Exception {
- Configuration conf = new Configuration();
- String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
- if (otherArgs.length != 2) {
- System.err.println("Usage: wordcount <in> <out>");
- System.exit(2);
- }
- //conf.set("fs.defaultFS", "hdfs://192.168.6.77:9000");
- Job job = new Job(conf, "word count");
- job.setJarByClass(WordCount.class);
- job.setMapperClass(TokenizerMapper.class);
- job.setCombinerClass(IntSumReducer.class);
- job.setReducerClass(IntSumReducer.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
- FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
复制代码
4、准备测试数据
micmiu-01.txt:
- Hi Michael welcome to Hadoop
- more see micmiu.com
复制代码
micmiu-02.txt:
- Hi Michael welcome to BigData
- more see micmiu.com
复制代码
micmiu-03.txt:
- Hi Michael welcome to Spark
- more see micmiu.com
复制代码
把 micmiu 打头的三个文件上传到hdfs:
- micmiu-mbp:Downloads micmiu$ hdfs dfs -copyFromLocal micmiu-*.txt /user/micmiu/test/input
- micmiu-mbp:Downloads micmiu$ hdfs dfs -ls /user/micmiu/test/input
- Found 3 items
- -rw-r--r-- 1 micmiu supergroup 50 2014-04-15 14:53 /user/micmiu/test/input/micmiu-01.txt
- -rw-r--r-- 1 micmiu supergroup 50 2014-04-15 14:53 /user/micmiu/test/input/micmiu-02.txt
- -rw-r--r-- 1 micmiu supergroup 49 2014-04-15 14:53 /user/micmiu/test/input/micmiu-03.txt
- micmiu-mbp:Downloads micmiu$
复制代码
5、配置运行参数
Run As → Run Configurations… ,在Arguments中配置运行参数,例如程序的输入参数:
<ignore_js_op style="word-wrap: break-word;">
6、运行
Run As -> Run on Hadoop ,执行完成后可以看到如下信息:
<ignore_js_op style="word-wrap: break-word;">
到此Eclipse中调用Hadoop2x本地伪分布式模式执行MR演示成功。
ps:调用集群环境MR运行一直失败,暂时没有找到原因。
上面说了一个整体的过程,下面详细描述了遇到的问题
二、Win7 Eclipse调试Centos Hadoop2.2-Mapreduce
1.搭建了一套Centos5.3 + Hadoop2.2 + Hbase0.96.1.1的开发环境,Win7 Eclipse调试MapReduce成功。
安装成功后,能顺利查看以下几个页面,就OK了。我的集群环境是200master,201-203slave。
dfs.http.address 192.168.1.200:50070
dfs.secondary.http.address 192.168.1.200:50090
dfs.datanode.http.address 192.168.1.201:50075
yarn.resourcemanager.webapp.address 192.168.1.200:50030
mapreduce.jobhistory.webapp.address 192.168.1.200:19888。这个好像访问不了。需要启动hadoop/sbin/mr-jobhistory-daemon.sh start historyserver才可以访问。
三. Hadoop2.x eclispe-plugin
需要注意一点的是,Hadoop installation directory里填写Win下的hadoop home地址,其目的在于创建MapReduce Project能从这个地方自动引入MapReduce需要的jar。
插件可以从下面下载:
四. 各种问题
1.上面一步完成后,创建一个MapReduce Project,运行时发现出问题了。
- java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
-
复制代码
跟代码就去发现是HADOOP_HOME的问题。如果HADOOP_HOME为空,必然fullExeName为null\bin\winutils.exe。解决方法很简单啦,乖乖的配置环境变量吧,不想重启电脑可以在MapReduce程序里加上System.setProperty("hadoop.home.dir", "...");暂时缓缓。org.apache.hadoop.util.Shell.java
- public static final String getQualifiedBinPath(String executable)
- throws IOException {
- // construct hadoop bin path to the specified executable
- String fullExeName = HADOOP_HOME_DIR + File.separator + "bin"
- + File.separator + executable;
- File exeFile = new File(fullExeName);
- if (!exeFile.exists()) {
- throw new IOException("Could not locate executable " + fullExeName
- + " in the Hadoop binaries.");
- }
- return exeFile.getCanonicalPath();
- }
- private static String HADOOP_HOME_DIR = checkHadoopHome();
- private static String checkHadoopHome() {
- // first check the Dflag hadoop.home.dir with JVM scope
- String home = System.getProperty("hadoop.home.dir");
- // fall back to the system/user-global env variable
- if (home == null) {
- home = System.getenv("HADOOP_HOME");
- }
- ...
- }
复制代码
2.这个时候得到完整的地址fullExeName,我机器上是D:\Hadoop\tar\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe。继续执行代码又发现了错误
3.继续出问题
- at org.apache.hadoop.util.Shell.execCommand(Shell.java:661)
- at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:639)
- at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:435)
复制代码
继续跟代码org.apache.hadoop.util.Shell.java
- public static String[] getSetPermissionCommand(String perm, boolean recursive,
- String file) {
- String[] baseCmd = getSetPermissionCommand(perm, recursive);
- String[] cmdWithFile = Arrays.copyOf(baseCmd, baseCmd.length + 1);
- cmdWithFile[cmdWithFile.length - 1] = file;
- return cmdWithFile;
- }
- /** Return a command to set permission */
- public static String[] getSetPermissionCommand(String perm, boolean recursive) {
- if (recursive) {
- return (WINDOWS) ? new String[] { WINUTILS, "chmod", "-R", perm }
- : new String[] { "chmod", "-R", perm };
- } else {
- return (WINDOWS) ? new String[] { WINUTILS, "chmod", perm }
- : new String[] { "chmod", perm };
- }
- }
复制代码
cmdWithFile数组的内容为{"D:\Hadoop\tar\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe", "chmod", "755", "xxxfile"},我把这个单独在cmd里执行了一下,发现
4.到了这里,已经看到曙光了,但问题又来了
- Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
复制代码
代码就去
- /** Windows only method used to check if the current process has requested
- * access rights on the given path. */
- private static native boolean access0(String path, int requestedAccess);
复制代码
显然缺少dll文件,还记得https://github.com/srccodes/hadoop-common-2.2.0-bin下载的东西吧,里面就有hadoop.dll,最好的方法就是用hadoop-common-2.2.0-bin-master/bin目录替换本地hadoop的bin目录,并在环境变量里配置PATH=HADOOP_HOME/bin,重启电脑。
5.终于看到了MapReduce的正确输出output99。
<ignore_js_op style="word-wrap: break-word; color: rgb(68, 68, 68); font-family: Tahoma, 'Microsoft Yahei', Simsun; font-size: 14px; line-height: 21px;">
五. 总结
hadoop eclipse插件不是必须的,其作用在我看来就是如下三点(这个是一个错误的认识,具体请参考http://zy19982004.iteye.com/blog/2031172)。study-hadoop是一个普通project,直接运行(不通过Run on Hadoop这只大象),一样可以调试到MapReduce。
对hadoop中的文件可视化。
创建MapReduce Project时帮你引入依赖的jar。
Configuration conf = new Configuration();时就已经包含了所有的配置信息。
还是自己下载hadoop2.2的源码编译好,应该是不会有任何问题的(没有亲测)。
六. 其它问题
1.还是
- Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
复制代码
代码跟到org.apache.hadoop.util.NativeCodeLoader.java去看
- static {
- // Try to load native hadoop library and set fallback flag appropriately
- if(LOG.isDebugEnabled()) {
- LOG.debug("Trying to load the custom-built native-hadoop library...");
- }
- try {
- System.loadLibrary("hadoop");
- LOG.debug("Loaded the native-hadoop library");
- nativeCodeLoaded = true;
- } catch (Throwable t) {
- // Ignore failure to load
- if(LOG.isDebugEnabled()) {
- LOG.debug("Failed to load native-hadoop with error: " + t);
- LOG.debug("java.library.path=" +
- System.getProperty("java.library.path"));
- }
- }
-
- if (!nativeCodeLoaded) {
- LOG.warn("Unable to load native-hadoop library for your platform... " +
- "using builtin-java classes where applicable");
- }
- }
复制代码
这里报错如下
- DEBUG org.apache.hadoop.util.NativeCodeLoader - Failed to load native-hadoop with error: java.lang.UnsatisfiedLinkError: HADOOP_HOME\bin\hadoop.dll: Can't load AMD 64-bit .dll on a IA 32-bit platform
-
复制代码
怀疑是32位jdk的问题,替换成64位后,没问题了
- 2014-03-11 19:43:08,805 DEBUG org.apache.hadoop.util.NativeCodeLoader - Trying to load the custom-built native-hadoop library...
- 2014-03-11 19:43:08,812 DEBUG org.apache.hadoop.util.NativeCodeLoader - Loaded the native-hadoop library
复制代码
这里也解决了一个常见的警告
- WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
复制代码
http://www.aboutyun.com/thread-7541-1-1.html