- pytorch实现单机多卡训练
*Major*
pytorch人工智能python
pytorch实现单机多卡训练fromtorch.nn.parallelimportDataParallel#单机多卡的分布式训练(数据并行)模型训练加速'''三构建模型'''model=build_model(CFG.backbone,CFG.num_classes,CFG.device)model.load_state_dict(torch.load("best_epoch.bin"))mod
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- Vue前端框架选型论证
2401_84434086
程序员前端框架vue.js前端
Model:负责保存应用数据,与后端数据进行同步Controller:负责业务逻辑,根据用户行为对Model数据进行修改View:负责视图展示,将model中的数据可视化出来。但是,但是前端MVC也存在一些严重的问题:model和view的数据交互,非常的混乱,而且维护起来非常麻烦。这就是灵活开发带来的后遗症。拿backbone举个例子,backbone将Model的set和on方法暴露出来,方便
- 2011705918
qq_28091803
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- 云计算的PDF
qq2011705918
IT电子书pdf
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv9网络框架
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
#YOLOv9#parametersnc:80#numberofclassesdepth_multiple:1.0#modeldepthmultiplewidth_multiple:1.0#layerchannelmultiple#activation:nn.LeakyReLU(0.1)#activation:nn.ReLU()#anchorsanchors:3#YOLOv9backbonebac
- MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出
端木的AI探索屋
bevfusiononnx量化自动驾驶bevfusion
目录综述export-camera.py加载模型加载数据生成需要导出成onnx的模块Backbone模块VTransform模块生成onnx使用pytorch原生的伪量化计算方法导出camera.backbone.onnx导出camera.vtransform.onnx综述bevfusion的各个部分的实现有着鲜明的特点,并且相互独立,特别是考虑到后续部署的需要,这里将整个网络,分成多个部分,分别
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- Transformer实战-系列教程17:DETR 源码解读4(Joiner类/PositionEmbeddingSine类/位置编码/backbone)
机器学习杨卓越
Transformer实战transformer深度学习人工智能计算机视觉pytorchDETR
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码DETR算法解读DETR源码解读1(项目配置/CocoDetection类)DETR源码解读2(ConvertCocoPolysToMask类)DETR源码解读3(DETR类)DETR源码解读4(Joiner类/PositionEmbedding
- MIT-BEVFusion系列七--量化2_Camera、Fuser、Decoder网络的量化
端木的AI探索屋
自动驾驶算法python人工智能网络
目录Camera量化CameraBackbone(Resnet50)量化替换量化层,增加residual_quantizer,修改bottleneck的前向对Add操作进行量化CameraNeck(GeneralizedLSSFPN)量化将Conv2d模块替换为QuantConv2d模块CameraNeck中添加对拼接操作的量化替换CameraNeck中的ForwardCameraVTransfo
- MIT-BEVFusion系列七--量化1_公共部分和激光雷达网络的量化
端木的AI探索屋
bevfusion自动驾驶算法python人工智能
目录官方readme的Notesptq.py量化模块初始化解析命令行参数加载配置信息创建dataset和dataloader构建模型模型量化Lidarbackbone量化稀疏卷积模块量化量化完的效果加法模块量化本文是Nvidia的英伟达发布的部署MIT-BEVFusion的方案官方readme的Notes这是是官方提到的量化时需要注意的三个方面:1)在模型进行前向时,使用融合BN层可以为模型带来更
- Unet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割深度学习人工智能机器学习
1.介绍之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。缺点就是没法实现多类别的分割,具体可以参考:二值图像分割统一项目本章只对增加的代码进行介绍,其余的参考上述链接博文本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间文件目录如下:2.实现
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT
wshzd
LangChain笔记langchainprompt
如下图所示,LLM仍然是自治代理的backbone,可以通过给LLM增加以下模块来增强LLM功能:PrompterAgentCheckerModuleMemorymoduleToTcontroller当解决具体问题时,这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况,其中动态创建链并按顺序执行,同时多次轮询LLM。下图是LangSmith[1]的界面,从图中可以看到使用的token
- 大模型实践笔记(2)——Clip改进:通过文本检索视频帧
不会写代码!!
人工智能LLMPython学习深度学习大数据
目录超参数设置配置LLM-clip的backbone文本编码抽取视频帧并编码视频帧匹配保存结果帧工程流全是干货超参数设置#超参数设置PARAMS={"clip_model":"openai/clip-vit-base-patch32",#推理模型名称"video_folder":"./video_test",#视频文件夹路径"text_description":"Aphotoofapersonwe
- ODOO--OWL简介
姜振建 15954039008
odoojavascript前端前端框架
1.什么是OWLOWL是Odoo创建的前端开发框架。这是他们在最新版本的Odoo(版本14)中引入的一个框架,以使前端代码更好一些。如果您熟悉其他前端框架,如React、Vue、Angular、Backbone等,那么您将很快了解OWL。它遵循许多相同的模式和想法。如果您不熟悉前端框架的概念,那么最近的框架都围绕着消除过去通常使用javascript完成的琐碎事务性工作的想法展开。我相信您熟悉数百
- YOLOv8算法改进【NO.91】引入RCS-YOLO算法模块
人工智能算法研究院
首发创新改进方法YOLO算法改进系列YOLO算法transformer
前言YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- YOLOv8 : 网络结构
赛先生.AI
YOLOv8YOLO计算机视觉目标检测
一.YOLOv8网络结构1.BackboneYOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 最新模型VMamba:颠覆视觉Transformer,下一代主流Backbone?
深蓝学院
计算机视觉CNN
论文标题:VMamba:VisualStateSpaceModel论文作者:YueLiu,YunjieTian,YuzhongZhao,HongtianYu,LingxiXie,YaoweiWang,QixiangYe,YunfanLiu1.摘要卷积神经网络(CNN)与视觉Transformer(ViT)是目前最流行的两种视觉表征基础模型。CNN在线性复杂度下,具有惊人的可扩展性。ViTs在性能方
- Transformer实战-系列教程7:SwinTransformer 算法原理 1
机器学习杨卓越
Transformer实战人工智能深度学习Transformer计算机视觉图像分割swinTransformer
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传1、SwinTransformerSwinTransformer可以看作为一个backbone用来做分类、检测、分割都是非常好的也可以直接套用在下游任务中不仅源码公开了,预训练模型也公开了预训练模型提供大中小三个版本图像中的像素点太多了,如果需要更多的特征就
- 【DeepLearning-10】yolo.py文件关键代码parse_model(d, ch)函数
风筝超冷
YOLO
这段代码功能是根据提供的配置字典(d)和输入通道列表(ch)来解析并构建一个YOLOv5模型。函数的核心工作是遍历模型的每一层,并根据配置创建相应的神经网络层。我们可以在函数中为新增模块配置构造参数设置。函数中fori,(f,n,m,args)inenumerate(d['backbone']+d['head']):#from,number,module,args这一部分对应yolo.yaml文件
- YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读
Prime's Blog
深度学习深度学习训练营YOLO
YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言二、我的环境三、yolov5s.yaml源文件内容四、Parameters五、anchors配置六、backbone七、head八、总结OLOv5-第Y2周:训练自己的数据集)YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言本文为365天深度学习
- 目标检测任务的调研与概述
Alexa2077
目标检测目标跟踪人工智能
目标检测任务的调研与概述0FQA1目标检测任务基本知识:1.1什么是目标检测?1.2目标检测的损失函数都有那些?1.2.1类别损失:1.2.2位置损失:1.3目标检测的评价指标都有那些?1.4目标检测有那些常见的数据集?2目标检测的进阶知识:2.1经典的backbone:2.2目标检测器-传统的检测方法2.3目标检测器-两阶段的检测方法:2.3.1R-CNN开山之作2.3.2SPP-Net2.3.
- 【计算机视觉 | 目标检测】DETR风格的目标检测框架解读
旅途中的宽~
目标检测经典论文导读计算机视觉开放域目标检测计算机视觉目标检测深度学习DETR
文章目录一、前言二、理解2.1DETR的理解2.2DETR的细致理解2.2.1Backbone2.2.2Transformerencoder2.2.3Transformerdecoder2.2.4Predictionfeed-forwardnetworks(FFNs)2.2.5Auxiliarydecodinglosses2.3更具体的结构2.4编码器的原理和作用2.5解码器的原理和作用三、注意力
- CS455 Computer Communications and Networking
zhuyu0206girl
网络
Answerthefollowingquestions[100pt]1.[18pt]Thefollowingfigureshows7interconnectedASes:A,B,C,V,W,XandY.ASA,BandCareprovidednetworks(e.g.,backboneASes)andV,W,XandYaretheircustomernetworks(e.g.,accessnetw
- 简单了解YOLOv8
望外追晚
YOLO
简单介绍YOLOv8这里主要关注模型的backbone和后处理的过程,并通过对比YOLOv5的架构来更深入的了解YOLOv8。模型框架YOLOv5中的C3替换为更精简的C2f,即增加了更多的跳跃连接和split操作;Backbone中C2f的block数从3-6-9-3改成了3-6-6-3;耦合头变成了解耦头,分类和回归分为两个分支分别进行;数据前处理1、letterbox缩放:yolov8的输入
- 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
AI小怪兽
RT-DETR魔术师人工智能计算机视觉算法pytorch开发语言python深度学习
RT-DETR魔术师专栏介绍:https://blog.csdn.net/m0_63774211/category_12497375.html✨✨✨魔改创新RT-DETR引入前沿顶会创新(CVPR2023,ICCV2023等),助力RT-DETR基于ultralytics优化,与YOLO完美结合重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detec
- 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLO小目标检测目标跟踪算法人工智能目标检测YOLO深度学习计算机视觉
Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!专栏介绍:✨✨✨解决小目标检测难点并提升小目标检测性能;小目标、遮挡
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一