本文主要讨论了三个典型的多线程交互问题:生产者消费者问题、理发师问题与哲学家问题。我对上述三个问题做了基本的处理和编程实现(Ruby&Erlang)。
各种语言实现本问题: http://dada.perl.it/shootout/prodcons_allsrc.html
./lib/utils.rb:
$KCODE = 'utf8' require 'thread' alias putsOld puts Stdout_mutex = Mutex.new def puts(*args) Stdout_mutex.synchronize do putsOld args $stdout.flush end end
cp.rb:
$KCODE = 'utf8' require '../lib/utils.rb' # Two important problem: # Empty and full class CPQueue def initialize(num) @num = num @point = 0 @items = [] @semaphore = Mutex.new @resource = ConditionVariable.new @full = ConditionVariable.new end def pop @semaphore.synchronize do @resource.wait(@semaphore) while @point<=0 item = @items[@point] @point -= 1 @full.signal item end end def push(item) @semaphore.synchronize do @full.wait(@semaphore) while @point>=@num @point +=1 @items[@point] = item @resource.signal end end end class BasicCP def initialize(queue) @queue = queue end end class Consumer < BasicCP @@CC = 0 def consume product = @queue.pop @@CC += 1 puts "#{@@CC}:Product #{product} consumed." end end class Producer < BasicCP @@iNum = 1 def produce product = @@iNum @@iNum +=1 @queue.push(product) puts " Product #{product} produced." end end nn = [] 100.times do |i| nn[i] = 10 sized_queue = CPQueue.new(1+rand(nn[i])) consumer_threads = [] (1+rand(nn[i])).times { consumer_threads << Thread.new { consumer = Consumer.new(sized_queue) sleep((rand(nn[i]))/100.0) consumer.consume } } (10+rand(3)).times{ Thread.new { producer = Producer.new(sized_queue) sleep((rand(nn[i]))/100.0) producer.produce } } consumer_threads.each { |thread| thread.join } end
cp.rb: 在考虑多线程程序时,我们会遇到资源问题。从表面上看,我们只会处理一个信号量就是储物柜(Queue),但是在考虑时,我们需要观察这个信号量描述对象的临界点(空的/满了),然后做信号通信。
-module(cp). -export([main/0]). main() -> forTest(1, 10) . forTest(N,N) -> test(N); forTest(M, N) -> test(M), forTest(M+1, N). %num() -> % random:seed(), % random:uniform(100). test(N) -> spawn( fun() -> Q = spawn(fun() -> queue({run, [], [] ,[] , N})end), T = N, forCP(1, T, fun()-> spawn(fun() -> customer({run, Q}) end) end), forCP(1, T, fun()-> spawn(fun() -> producer({run, Q, T}) end) end) end). forCP(N, N, F) -> F(); forCP(M, N, F) -> F(), forCP(M+1, N, F). queue({run, Items, CustomersWL, ProducerWL, N}) -> receive {From, Opt} -> {NI, NC, NP} = queue([From, Opt, Items, CustomersWL, ProducerWL, N]), queue({run, NI, NC, NP, N}) end; %Empty queue([From, {pop}, [], C, P, _]) -> From ! {self() , {wait}}, {[], [From|C], P}; %Data queue([From, {pop}, [T|L], NC, NP, _]) -> From ! {self(), {data, T}}, %Remove From in NC %Call NP isOk(NP), {L, NC, NP}; queue([From, {push, Data}, NI, NC, NP, N]) -> if length(NI) < N -> From ! {self(), {ok}}, %Remove From in NP %Call NC isOk(NC), {[Data|NI], NC, NP}; length(NI) >= N -> From ! {self(), {full}}, {NI, NC, [From|NP]} end. customer({run, Queue}) -> Queue ! {self(), {pop}}, receive {NewQueue, {wait}} -> customer({wait, NewQueue}); {_, {data, T}} -> customer({data, T}) end; customer({wait, _}) -> receive {From, ok} -> customer({run, From}) end; customer({data, D}) -> io:format("Custome ~p~n", [D]). producer({run, Queue, N}) -> Queue ! {self(),{push, N}}, receive {_, {ok}} -> io:format("Produce ~p~n", [N]); {NewQueue, {full}} -> producer({full, NewQueue, N}) end; producer({full, _, N}) -> receive {From, ok} -> producer({run, From, N}) end. isOk([])-> {ok}; isOk([T|L])-> T ! {self(), ok}, isOk(L).
bc.rb:
$KCODE = 'utf8' require '../lib/utils.rb' class BCQueue def initialize(num) @num = num @point = 0 @items = [] @semaphore = Mutex.new end def pop @semaphore.synchronize do if @point > 0 item = @items[@point] @point -= 1 item else nil end end end def push(item) @semaphore.synchronize do if @point<@num @point +=1 @items[@point] = item true else false end end end end class BasicBC def initialize(queue) @queue = queue end end class Barber < BasicBC def initialize(queue) super(queue) @workSem = Mutex.new @workSem.synchronize{ @isWork = false } @sem = Mutex.new end def work @workSem.synchronize{ @isWork = true } while true item = @queue.pop if item item.begin_cut sleep(rand(10)/1000.0) item.end_cut else @workSem.synchronize{ @isWork = false } puts "Barber Sleep." break end end end def wakeup work end def work? @workSem.synchronize{ @isWork } end def semaphore @sem end end class Customer < BasicBC @@num = 0 def initialize(queue, barber) super(queue) @num = @@num+=1 @barber = barber end def get_cut if @barber.work? unless @queue.push(self) puts "C##{@num} left." else puts "C##{@num} wait." end else @barber.semaphore.synchronize do @queue.push(self) puts "C##{@num} Wakeup" @barber.wakeup end end end def begin_cut puts "C##{@num} Begin" end def end_cut puts "Finish #{@num}" end end queue = BCQueue.new(5) barber = Barber.new(queue) barber.work customers = [] 100.times do customers << Thread.new do sleep(rand(100)/1000.0) customer = Customer.new(queue, barber) customer.get_cut end end customers.each {|c| c.join}
bc.erl:
-module(bc). -export([main/0]). main() -> forTest(10, 10) . forTest(N,N) -> test(N); forTest(M, N) -> test(M), forTest(M+1, N). test(N) -> spawn( fun() -> Q = spawn(fun() -> queue({run, [], N})end), T = N, B = spawn(fun() -> barber({run, Q}) end), forCP(1, T+3, fun()-> spawn(fun() -> customer({run, Q, B}) end) end) end). forCP(N, N, F) -> F(); forCP(M, N, F) -> F(), forCP(M+1, N, F). queue({run, Items, N}) -> receive {From, Opt} -> NI = queue([From, Opt, Items, N]), queue({run, NI, N}) end; %Empty queue([From, {pop, Time}, [], _]) -> %io:format("Pop:NULL~n",[]), From ! {self() , {empty}, Time}, []; %Data queue([From, {pop, Time}, L, _]) -> %io:format("Pop:~p~n",[T]), queue([From, {popReverse, Time}, L]); queue([From, {popReverse, Time}, L]) -> [T|NewL] = lists:reverse(L), From ! {self(), {data, T}, Time}, lists:reverse(NewL); queue([From, {push, Data}, NI, N]) -> %io:format("New item:~p~n",[Data]), if length(NI) < N -> From ! {self(), ok}, [Data|NI]; length(NI) >= N -> From ! {self(), full}, NI end. barber({run, Queue}) -> Time = now(), Queue ! {self(), {pop, Time}}, %io:format("Send pop from ~p~n",[self()]), barber({run, Queue, Time}); barber({run, Queue, Time}) -> %io:format("Waiting request from ~p~n", [Time]), receive {Queue, {empty}, Time} -> barber({sleep, Queue}); {Queue, {data, T}, Time} -> barber({send, T, Queue}); {Queue, _, _} -> %io:format("Old request coming at ~p~n",[NewTime]), barber({run, Queue, Time}); {From, require} -> %io:format("Working in Require~n",[]), %From ! {self(), working}, barber({send, From, Queue}) end; barber({sleep, Queue}) -> io:format("Barber sleep~n",[]), receive {From, require} -> %io:format("Require from ~p~n",[From]), barber({send, From, Queue}) end; barber({send, D, Queue})-> %io:format("Pop from queue~n",[]), D ! {self(), cutting}, barber({data, D, Queue}); barber({data, D, Queue}) -> receive {D , finish} -> io:format("Barber worked for ~p~n", [D]), barber({run, Queue}); {From, require} -> From ! {self(), working}, barber({data, D, Queue}) end. customer({run, Queue, Barber}) -> Barber ! {self(), require}, %io:format("~p send require to ~p ~n",[self(), Barber]), customer({wait,Queue, Barber}); customer({working, Queue, Barber}) -> Queue ! {self(), {push,self()}}, receive {_, full} -> io:format("~p Left~n",[self()]); {_, ok} -> io:format("~p waiting~n",[self()]), customer({wait,Queue, Barber}) end; customer({wait, Queue, Barber}) -> receive {Barber, cutting} -> %io:format("Survive to ~p~n", [self()]), Barber ! {self(), finish}; {Barber, working} -> customer({working, Queue, Barber}) end.
bc.erl: 利用时间戳控制过期信息。从这个例子中,我们可以看到在编写消息传递(利用邮箱系统交互)时需要注意消息的对应和实时性。
ph.rb:
$KCODE = 'utf8' require '../lib/utils.rb' class Kit def initialize(num) @size = num @kits = [true] * @size @sem = Mutex.new end def require(l) r = (l+1) % @size @sem.synchronize do if @kits[l] and @kits[r] @kits[l] = @kits[r] = false true else false end end end def release(l) r = (l+1) % @size @sem.synchronize do @kits[l] = @kits[r] = true end end end class Phils # The num begin from zero! def initialize(num, kits) @num = num @kits = kits end def live 100.times do think eat end end def eat while not @kits.require(@num) puts "#{@num} Wait Eating" sleep(rand(100)/1000.0) end puts "#{@num} Eating" sleep(rand(100)/1000.0) @kits.release(@num) end def think puts "#{@num} Thinking" sleep(rand(100)/1000.0) end end N = 5 kit = Kit.new(N) phs = [] N.times do |i| phs<<Thread.new do person = Phils.new(i, kit) person.live end end phs.each {|t| t.join}
ph.erl:
-module(ph). -export([main/0]). main() -> KitsArray = array:set(0, true,array:set(4, true,array:set(3, true,array:set(2, true,array:set(1, true, array:new(5)) ) ) ) ), K = spawn(fun() -> kits(run, KitsArray) end), spawn(fun() -> philosopher(run, K, 4, 10) end), spawn(fun() -> philosopher(run, K, 3, 10) end), spawn(fun() -> philosopher(run, K, 2, 10) end), spawn(fun() -> philosopher(run, K, 1, 10) end), spawn(fun() -> philosopher(run, K, 0, 10) end). kits(run, KitsArray) -> Size = array:size(KitsArray), receive {From, require, N} -> L = array:get(N, KitsArray), R = array:get((N+1)rem Size, KitsArray), kits(From, L andalso R, KitsArray, N); {_, release, N} -> kits(release, KitsArray, N) end. kits(From, true, KitsArray, N) -> From ! ok, L = N, R = (N+1) rem array:size(KitsArray), kits(run, array:set(R, false, array:set(L, false, KitsArray))); kits(From, false, KitsArray, _) -> From ! wait, kits(run, KitsArray). kits(release, KitsArray, N) -> L = N, R = (N+1) rem array:size(KitsArray), kits(run, array:set(R, true, array:set(L, true, KitsArray))). philosopher(run,_, _, 0) -> true; philosopher(run,Kits, N, T) -> philosopher(thinking,Kits, N, T); philosopher(thinking,Kits, N, T) -> io:format("~p(~p) is thinking~n", [N, T]), sleep(10), philosopher(eating,Kits, N, T); philosopher(eating,Kits, N, T) -> Kits ! {self(), require, N}, receive wait -> io:format("~p(~p) is waiting~n", [N, T]), sleep(5), philosopher(eating, Kits, N, T); ok -> io:format("~p(~p) is eating~n", [N, T]), sleep(8), Kits ! {self(), release, N}, philosopher(run, Kits,N, T -1) end. sleep(T) -> receive after T -> true end.
在这里,我们需要重新思考一下我们在编写程序时需要注意的问题。其实这不突然,我们在编写上面两个问题的演示解答时只注重了正确性,而在实际应用中还要考虑很多问题。如果说这些问题只是个简单处理也行,但是面对一些情况(譬如本例的效率问题时)和问题时,我们甚至需要换一种解决方法。
正确性、健壮性、可靠性、效率、易用性、可读性(可理解性)、可扩展性、可复用性、兼容性、可移植性
而在编写这个程序时,我们需要考虑效率问题,毕竟这个问题与上面不同。上面两个问题都有自己的问题:效率瓶颈(货物仓库、理发师自己和椅子),但是本问题中的资源是分散的,不存在绝对的中心。但是我们在解决这个问题的时候,有可能引入一些瓶颈元素:管程、集中资源分配等。