[Lucene] 使用Lucene创建自定义的词干分析器

代码主要来源: 《Collective Intelligence 实战》

Lucene版本: 4.6.1

原来的代码是基于2.2写的,很多东西已经变了。现在用4.6.1重现实现一遍

 

 

package impl;

import java.io.IOException;
import java.io.Reader;
import java.io.StringReader;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.Tokenizer;
import org.apache.lucene.analysis.core.LowerCaseFilter;
import org.apache.lucene.analysis.core.StopFilter;
import org.apache.lucene.analysis.en.PorterStemFilter;
import org.apache.lucene.analysis.standard.StandardTokenizer;
import org.apache.lucene.analysis.synonym.SynonymFilter;
import org.apache.lucene.analysis.synonym.SynonymMap;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.util.CharArraySet;
import org.apache.lucene.util.CharsRef;
import org.apache.lucene.util.Version;

public class PorterStemStopWordAnalyzer extends Analyzer {

	// 自定义停用词
	private static final String[] stopWords = {"and", "of", "the", "to", "is", "their", "can", "all"};
	public PorterStemStopWordAnalyzer() {
	}

	@Override
	protected TokenStreamComponents createComponents(String fieldName, Reader reader) {
		// 创建一个分词器
		Tokenizer tokenizer = new StandardTokenizer(Version.LUCENE_46, reader);
		
		// 创建一系列的分词过滤器
		TokenFilter lowerCaseFilter = new LowerCaseFilter(Version.LUCENE_46, tokenizer);
		TokenFilter synonymFilter = new SynonymFilter(lowerCaseFilter, getSynonymMap(), true);
		TokenFilter stopFilter = new StopFilter(Version.LUCENE_46, synonymFilter, buildCharArraySetFromArry(stopWords));
		TokenFilter stemFilter = new PorterStemFilter(stopFilter);
		
		// TokenStream的包装类 在2.2之中 是TokenStream
		return new TokenStreamComponents(tokenizer, stemFilter);
	}
	
	// 将数组转成lucene可识别的CharArraySet对象 CharArraySet类似java.util.set
	private CharArraySet buildCharArraySetFromArry(String[] array) {
		CharArraySet set = new CharArraySet(Version.LUCENE_46, array.length, true);
		for(String value : array) {
			set.add(value);
		}
		return set;
	}
	
	// 创建一个同义词表
	private SynonymMap getSynonymMap() {
		String base1 = "fast";
		String syn1 = "rapid";
		
		String base2 = "slow";
		String syn2 = "sluggish";
		
		SynonymMap.Builder sb = new SynonymMap.Builder(true);
		sb.add(new CharsRef(base1), new CharsRef(syn1), true);
		sb.add(new CharsRef(base2), new CharsRef(syn2), true);
		SynonymMap smap = null;
		try {
			smap = sb.build();
		} catch (IOException e) {
			e.printStackTrace();
		}
		return smap;
	}
	
	// 测试方法
	public static void testPorterStemmingAnalyzer() throws IOException {
		Analyzer analyzer = new PorterStemStopWordAnalyzer();
		String text = "Collective intelligence and Web2.0, fast and rapid";
		Reader reader = new StringReader(text);
		TokenStream ts = null;
		try {
			ts = analyzer.tokenStream(null, reader);
			ts.reset();
			while(ts.incrementToken()) {
				CharTermAttribute ta = ts.getAttribute(CharTermAttribute.class);  
				System.out.println(ta.toString());
			}
		} catch (IOException e) {
			e.printStackTrace();
		} 
		
	}
	
	public static void main(String[] args) throws IOException {
		testPorterStemmingAnalyzer();
	}

}

 

 

注意:

(1) TokenStream在初始化之后需要reset一次,不然会抛出异常

(2) 将TokenStream 转成Token 常用的一个方法就是使用CharTermAttribute

除了CharTermAttribute 还有其他的Attribute: 比如FlagsAttribute ...

(3) 使用到的类库可以参考上一篇文章:http://rangerwolf.iteye.com/admin/blogs/2011535

(4) 在createComponents方法之中使用了一个同义词过滤器,在构造这个过滤器的时候是通过getSynonymMap方法进行的。在测试样本之中的 fast and rapid 解析完成之后的结果如下:

fast
rapid
rapid

 相当于有两个rapid! 可能是因为这是因为synonymFilter在stopFilter之前运行。

根据java doc 文档的秒速,同义词过滤器应该尽早的运行。比如second rule.

做了另外的一个测试:

String base3 = "Collective Intelligence";
String syn3 = "CI";
sb.add(new CharsRef(base3), new CharsRef(syn3), true);

 即将Collective Intelligence 跟CI 同义

同样的样本的运行结果完全不变! 

说明无法对词长度为2的词组进行同义词~

你可能感兴趣的:(Lucene)