java8新特性介绍(二)

4. Java 类库的新特性

Java 8 通过增加大量新类,扩展已有类的功能的方式来改善对并发编程、函数式编程、日期/时间相关操作以及其他更多方面的支持。

4.1 Optional

到目前为止,臭名昭著的空指针异常是导致Java应用程序失败的最常见原因。以前,为了解决空指针异常,Google公司著名的Guava项目引入了Optional类,Guava通过使用检查空值的方式来防止代码污染,它鼓励程序员写更干净的代码。受到Google Guava的启发,Optional类已经成为Java 8类库的一部分。

Optional实际上是个容器:它可以保存类型T的值,或者仅仅保存null。Optional提供很多有用的方法,这样我们就不用显式进行空值检测。更多详情请参考官方文档。

我们下面用两个小例子来演示如何使用Optional类:一个允许为空值,一个不允许为空值。

Optional< String > fullName = Optional.ofNullable( null );
System.out.println( "Full Name is set? " + fullName.isPresent() );        
System.out.println( "Full Name: " + fullName.orElseGet( () -> "[none]" ) ); 
System.out.println( fullName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) );

如果Optional类的实例为非空值的话,isPresent()返回true,否从返回false。为了防止Optional为空值,orElseGet()方法通过回调函数来产生一个默认值。map()函数对当前Optional的值进行转化,然后返回一个新的Optional实例。orElse()方法和orElseGet()方法类似,但是orElse接受一个默认值而不是一个回调函数。下面是这个程序的输出:

Full Name is set ? false
Full Name: [none]
Hey Stranger!

让我们来看看另一个例子

Optional< String > firstName = Optional.of( "Tom" );
System.out.println( "First Name is set? " + firstName.isPresent() );       
System.out.println( "First Name: " + firstName.orElseGet( () -> "[none]" ) );
System.out.println( firstName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) );
System.out.println();

下面是程序的输出:

First Name is set ? true
First Name: Tom
Hey Tom!

更多详情请参考官方文档

4.2 Stream

最新添加的Stream API(java.util.stream) 把真正的函数式编程风格引入到Java中。这是目前为止对Java类库最好的补充,因为Stream API可以极大提供Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。

Stream API极大简化了集合框架的处理(但它的处理的范围不仅仅限于集合框架的处理,这点后面我们会看到)。让我们以一个简单的Task类为例进行介绍:

public class Streams  {
     private enum Status {
         OPEN, CLOSED
     };
     
     private static final class Task {
         private final Status status;
         private final Integer points;
 
         Task( final Status status, final Integer points ) {
             this .status = status;
             this .points = points;
         }
         
         public Integer getPoints() {
             return points;
         }
         
         public Status getStatus() {
             return status;
         }
         
         @Override
         public String toString() {
             return String.format( "[%s, %d]" , status, points );
         }
     }
}

Task类有一个分数的概念(或者说是伪复杂度),其次是还有一个值可以为OPEN或CLOSED的状态.让我们引入一个Task的小集合作为演示例子:

final Collection< Task > tasks = Arrays.asList(
     new Task( Status.OPEN, 5 ),
     new Task( Status.OPEN, 13 ),
     new Task( Status.CLOSED, 8 )
);

我们下面要讨论的第一个问题是所有状态为OPEN的任务一共有多少分数?在Java 8以前,一般的解决方式用foreach循环,但是在Java 8里面我们可以使用stream:一串支持连续、并行聚集操作的元素

// Calculate total points of all active tasks using sum()
final long totalPointsOfOpenTasks = tasks
     .stream()
     .filter( task -> task.getStatus() == Status.OPEN )
     .mapToInt( Task::getPoints )
     .sum();
         
System.out.println( "Total points: " + totalPointsOfOpenTasks );

程序在控制台上的输出如下:Total points: 18

这里有几个注意事项。第一,task集合被转换化为其相应的stream表示。然后,filter操作过滤掉状态为CLOSED的task。下一步,mapToInt操作通过Task::getPoints这种方式调用每个task实例的getPoints方法把Task的stream转化为Integer的stream。最后,用sum函数把所有的分数加起来,得到最终的结果。

在继续讲解下面的例子之前,关于stream有一些需要注意的地方(详情在这里).stream操作被分成了中间操作与最终操作这两种。

中间操作返回一个新的stream对象。中间操作总是采用惰性求值方式,运行一个像filter这样的中间操作实际上没有进行任何过滤,相反它在遍历元素时会产生了一个新的stream对象,这个新的stream对象包含原始stream
中符合给定谓词的所有元素。

像forEach、sum这样的最终操作可能直接遍历stream,产生一个结果或副作用。当最终操作执行结束之后,stream管道被认为已经被消耗了,没有可能再被使用了。在大多数情况下,最终操作都是采用及早求值方式,及早完成底层数据源的遍历。

stream另一个有价值的地方是能够原生支持并行处理。让我们来看看这个算task分数和的例子。

// Calculate total points of all tasks
final double totalPoints = tasks
    .stream()
    .parallel()
    .map( task -> task.getPoints() ) // or map( Task::getPoints )
    .reduce( 0 , Integer::sum );
     
System.out.println( "Total points (all tasks): " + totalPoints );

这个例子和第一个例子很相似,但这个例子的不同之处在于这个程序是并行运行的,其次使用reduce方法来算最终的结果。
下面是这个例子在控制台的输出:Total points (all tasks): 26.0

经常会有这个一个需求:我们需要按照某种准则来对集合中的元素进行分组。Stream也可以处理这样的需求,下面是一个例子:

// Group tasks by their status
final Map< Status, List< Task > > map = tasks
     .stream()
     .collect( Collectors.groupingBy( Task::getStatus ) );
System.out.println( map );

这个例子的控制台输出如下:{CLOSED=[[CLOSED, 8]], OPEN=[[OPEN, 5], [OPEN, 13]]}

让我们来计算整个集合中每个task分数(或权重)的平均值来结束task的例子。

// Calculate the weight of each tasks (as percent of total points)
final Collection< String > result = tasks
     .stream()                                        // Stream< String >
     .mapToInt( Task::getPoints )                     // IntStream
     .asLongStream()                                  // LongStream
     .mapToDouble( points -> points / totalPoints )   // DoubleStream
     .boxed()                                         // Stream< Double >
     .mapToLong( weigth -> ( long )( weigth * 100 ) ) // LongStream
     .mapToObj( percentage -> percentage + "%" )      // Stream< String>
     .collect( Collectors.toList() );                 // List< String >
         
System.out.println( result );

下面是这个例子的控制台输出:[19%, 50%, 30%]

最后,就像前面提到的,Stream API不仅仅处理Java集合框架。像从文本文件中逐行读取数据这样典型的I/O操作也很适合用Stream API来处理。下面用一个例子来应证这一点。

final Path path = new File( filename ).toPath();
try ( Stream< String > lines = Files.lines( path, StandardCharsets.UTF_8 ) ) {
     lines.onClose( () -> System.out.println( "Done!" ) ).forEach( System.out::println );
}


对一个stream对象调用onClose方法会返回一个在原有功能基础上新增了关闭功能的stream对象,当对stream对象调用close()方法时,与关闭相关的处理器就会执行。

Stream API、Lambda表达式与方法引用在接口默认方法与静态方法的配合下是Java 8对现代软件开发范式的回应。更多详情请参考官方文档。

4.3 Date/Time API (JSR 310)

Java 8通过发布新的Date-Time API (JSR 310)来进一步加强对日期与时间的处理。对日期与时间的操作一直是Java程序员最痛苦的地方之一。标准的 java.util.Date以及后来的java.util.Calendar一点没有改善这种情况(可以这么说,它们一定程度上更加复杂)。

这种情况直接导致了Joda-Time——一个可替换标准日期/时间处理且功能非常强大的Java API的诞生。Java 8新的Date-Time API (JSR 310)在很大程度上受到Joda-Time的影响,并且吸取了其精髓。新的java.time包涵盖了所有处理日期,时间,日期/时间,时区,时刻(instants),过程(during)与时钟(clock)的操作。在设计新版API时,十分注重与旧版API的兼容性:不允许有任何的改变(从java.util.Calendar中得到的深刻教训)。如果需要修改,会返回这个类的一个新实例。

让我们用例子来看一下新版API主要类的使用方法。第一个是Clock类,它通过指定一个时区,然后就可以获取到当前的时刻,日期与时间。Clock可以替换System.currentTimeMillis()与TimeZone.getDefault()。

// Get the system clock as UTC offset
final Clock clock = Clock.systemUTC();
System.out.println( clock.instant() );
System.out.println( clock.millis() );

下面是程序在控制台上的输出:

2014-04-12T15:19:29.282Z
1397315969360

我们需要关注的其他类是LocaleDate与LocalTime。LocaleDate只持有ISO-8601格式且无时区信息的日期部分。相应的,LocaleTime只持有ISO-8601格式且无时区信息的时间部分。LocaleDate与LocalTime都可以从Clock中得到。

// Get the local date and local time
final LocalDate date = LocalDate.now();
final LocalDate dateFromClock = LocalDate.now( clock );
         
System.out.println( date );
System.out.println( dateFromClock );
         
// Get the local date and local time
final LocalTime time = LocalTime.now();
final LocalTime timeFromClock = LocalTime.now( clock );
         
System.out.println( time );
System.out.println( timeFromClock );

下面是程序在控制台上的输出:

2014-04-12
2014-04-12
11:25:54.568
15:25:54.568

LocaleDateTime把LocaleDate与LocaleTime的功能合并起来,它持有的是ISO-8601格式无时区信息的日期与时间。下面是一个快速入门的例子。

// Get the local date/time
final LocalDateTime datetime = LocalDateTime.now();
final LocalDateTime datetimeFromClock = LocalDateTime.now( clock );
         
System.out.println( datetime );

System.out.println( datetimeFromClock );

下面是程序在控制台上的输出:

2014-04-12T11:37:52.309
2014-04-12T15:37:52.309

如果你需要特定时区的日期/时间,那么ZonedDateTime是你的选择。它持有ISO-8601格式具具有时区信息的日期与时间。下面是一些不同时区的例子:

// Get the zoned date /time
final ZonedDateTime zonedDatetime = ZonedDateTime.now();
final ZonedDateTime zonedDatetimeFromClock = ZonedDateTime.now( clock );
final ZonedDateTime zonedDatetimeFromZone = ZonedDateTime.now( ZoneId.of( "America/Los_Angeles" ) );
         
System.out.println( zonedDatetime );
System.out.println( zonedDatetimeFromClock );
System.out.println( zonedDatetimeFromZone );

下面是程序在控制台上的输出:

2014-04-12T11:47:01.017-04:00[America /New_York ]
2014-04-12T15:47:01.017Z
2014-04-12T08:47:01.017-07:00[America /Los_Angeles ]

最后,让我们看一下Duration类:在秒与纳秒级别上的一段时间。Duration使计算两个日期间的不同变的十分简单。下面让我们看一个这方面的例子。

// Get duration between two dates
final LocalDateTime from = LocalDateTime.of( 2014 , Month.APRIL, 16 , 0 , 0 , 0 );
final LocalDateTime to = LocalDateTime.of( 2015 , Month.APRIL, 16 , 23 , 59 , 59 );
 
final Duration duration = Duration.between( from, to );
System.out.println( "Duration in days: " + duration.toDays() );
System.out.println( "Duration in hours: " + duration.toHours() );

上面的例子计算了两个日期2014年4月16号与2014年4月16号之间的过程。下面是程序在控制台上的输出:

Duration in days: 365
Duration in hours: 8783

对Java 8在日期/时间API的改进整体印象是非常非常好的。一部分原因是因为它建立在“久战杀场”的Joda-Time基础上,另一方面是因为用来大量的时间来设计它,并且这次程序员的声音得到了认可。更多详情请参考官方文档。

4.4 JavaScript引擎Nashorn

Nashorn,一个新的JavaScript引擎随着Java 8一起公诸于世,它允许在JVM上开发运行某些JavaScript应用。Nashorn就是javax.script.ScriptEngine的另一种实现,并且它们俩遵循相同的规则,允许Java与JavaScript相互调用。下面看一个例子:

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName( "JavaScript" );

System.out.println( engine.getClass().getName() );

System.out.println( "Result:" + engine.eval( "function f() { return 1; }; f() + 1;" ) );

下面是程序在控制台上的输出:

jdk.nashorn.api.scripting.NashornScriptEngine

Result: 2

我们在后面的Java新工具章节会再次谈到Nashorn。

4.5 Base64

在Java 8中,Base64编码已经成为Java类库的标准。它的使用十分简单,下面让我们看一个例子:

package com.javacodegeeks.java8.base64;

 

import java.nio.charset.StandardCharsets;

import java.util.Base64;

 

public class Base64s {

    public static void main(String[] args) {

        final String text = "Base64 finally in Java 8!";

         

        final String encoded = Base64

            .getEncoder()

            .encodeToString( text.getBytes( StandardCharsets.UTF_8 ) );

        System.out.println( encoded );

         

        final String decoded = new String( 

            Base64.getDecoder().decode( encoded ),

            StandardCharsets.UTF_8 );

        System.out.println( decoded );

    }

}

程序在控制台上输出了编码后的字符与解码后的字符:

QmFzZTY0IGZpbmFsbHkgaW4gSmF2YSA4IQ==

Base64 finally in Java 8!

Base64类同时还提供了对URL、MIME友好的编码器与解码器(Base64.getUrlEncoder() / Base64.getUrlDecoder(), Base64.getMimeEncoder() / Base64.getMimeDecoder())。

4.6 并行(parallel)数组

Java 8增加了大量的新方法来对数组进行并行处理。可以说,最重要的是parallelSort()方法,因为它可以在多核机器上极大提高数组排序的速度。下面的例子展示了新方法(parallelXxx)的使用。

package com.javacodegeeks.java8.parallel.arrays;
 
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;
 
public class ParallelArrays {
     public static void main( String[] args ) {
         long [] arrayOfLong = new long [ 20000 ];       
         
         Arrays.parallelSetAll( arrayOfLong,
             index -> ThreadLocalRandom.current().nextInt( 1000000 ) );
         Arrays.stream( arrayOfLong ).limit( 10 ).forEach(
             i -> System.out.print( i + " " ) );
         System.out.println();
         
         Arrays.parallelSort( arrayOfLong );    
         Arrays.stream( arrayOfLong ).limit( 10 ).forEach(
             i -> System.out.print( i + " " ) );
         System.out.println();
     }
}

上面的代码片段使用了parallelSetAll()方法来对一个有20000个元素的数组进行随机赋值。然后,调用parallelSort方法。这个程序首先打印出前10个元素的值,之后对整个数组排序。这个程序在控制台上的输出如下(请注意数组元素是随机生产的):

Unsorted: 591217 891976 443951 424479 766825 351964 242997 642839 119108 552378
Sorted: 39 220 263 268 325 607 655 678 723 793

4.7 并发(Concurrency)

在新增Stream机制与lambda的基础之上,在java.util.concurrent.ConcurrentHashMap中加入了一些新方法来支持聚集操作。同时也在java.util.concurrent.ForkJoinPool类中加入了一些新方法来支持共有资源池(common pool)(请查看我们关于Java 并发的免费课程)。

新增的java.util.concurrent.locks.StampedLock类提供一直基于容量的锁,这种锁有三个模型来控制读写操作(它被认为是不太有名的java.util.concurrent.locks.ReadWriteLock类的替代者)。

在java.util.concurrent.atomic包中还增加了下面这些类:

  • DoubleAccumulator

  • DoubleAdder

  • LongAccumulator

  • LongAdder







你可能感兴趣的:(java8新特性介绍(二))