- 新手小白是否值得入坑PCDN
Mogu_cloud
网络云计算边缘计算
PCDN行业是闲置宽带给大厂(某大厂)做数据及视频分发。俗称节点。什么是节点呢?打个比方:家里的闲置宽带,用自己电脑或服务器挂个某心,某派,某dian心等公司的os系统,进行业务的部署,然后某厂家给该节点进行存储数据的分发,在从该节点分发到最近的节点。就好比接力形式的传递。节点也分大节点与小节点。小节点,在某心,某点心。都是较好的,收益也是较高的。大节点的话,大家还是不要参与,如果你是想赚的话,一
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- ”天下第一神数“——紫微斗数的JAVA实现!紫微玄机速run~
钮钴禄·爱因斯晨
赛博算命JAVA实现javapython开发语言
各位佬儿们好呀~~互三必回哦~更多精彩:个人主页赛博算命精彩文章:梅花易数的java实现赛博算命系列文章不作溢美之词,不作浮夸文章,此文与功名进取毫不相关也!与各位共勉!!文章目录#前言:一、紫微斗数简介二、紫微斗数的数学原理1.**命盘构建规则**2.**星曜分布算法**3.**运势推导逻辑**三、Java实现步骤1.代码分布实现1.1**数据结构设计**1.2**命盘构建算法实现**1.3**
- Mybatis的映射文件中,不同的映射文件,id是否可以重复
欣欣爱吃香菜
mybatis
首先如果xml映射文件中配置了namespace,那么id可以重复,如果没有配置namespace,id不可以重复;原因是namespace+id是作为Map的key使用的,如果没有namespace,只有id,那么id重复会导致数据相互覆盖;有了namespace,id也就可以重复,namespace+id自然也就不同。
- Redis
任璐
redis数据库缓存
1.Redis简介简单来说redis就是一个数据库,不过与传统数据库不同的是redis的数据是存在内存中的,所以存写速度非常快,因此redis被广泛应用于缓存方向。另外,redis也经常用来做分布式锁。redis提供了多种数据类型来支持不同的业务场景。除此之外,redis支持事务、持久化、LUA脚本、LRU驱动事件、多种集群方案。2.我们为什么要用redis/为什么要用缓存呢?主要从“高性能”和“
- 大模型最新面试题系列:训练篇之模型监控与调试
人肉推土机
大模型最新面试题集锦大全面试人工智能pytorchAI编程语言模型
1.训练过程中需要监控哪些关键指标?如何设置报警阈值?关键指标损失函数值:包括训练损失和验证损失,反映模型在训练和验证数据上的拟合程度。准确率:分类任务中的预测正确样本占总样本的比例,评估模型的预测能力。召回率和F1值:在二分类或多分类任务中,用于更全面地评估模型性能,特别是在正负样本不均衡的情况下。学习率:监控学习率的变化,确保其处于合适的范围,避免学习率过大导致模型不稳定或过小导致训练收敛过慢
- 基于TableStore的海量气象格点数据解决方案实战
阿里云云栖号
数据存储与数据库exceptionJava核心技术
前言气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点。气象数据中大量的数据是时空数据,记录了时间和空间范围内各个点的各个物理量的观测量或者模拟量,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题。传统的方案常常采用关系型数据库加文件系统的方式实现这类气象数据的存储和实时查询,这种方案在可扩展性、可维护性和性能上都
- 地球科学数据学习笔记---流向与风向、浪向
fried-ghost
地球科学数据学习笔记学习笔记数据分析
一、流向(current)流向一般指流体前进的方向、去向,一般以正北方向为正,例如流体从南流向北,则流向为0°,其示意图如下二、风向与浪向风向与浪向一般都指来向,与流向相反,例如风从南吹向北,则为南风,风向为180°。气象数据中一般会将风速数据存成u、v两个分量(雷达数据除外),u分量表示纬向风,v分量表示经向风。u为正,表示西风,风向为270°;v为正,表示南风,风向为180°。示意图如下所示,
- 大数据与物联网(IoT)的完美融合:驱动智能新时代
Echo_Wish
大数据高阶实战秘籍大数据物联网python人工智能
大数据与物联网(IoT)的完美融合:驱动智能新时代大家好,我是你们的大数据探索者Echo_Wish。今天,我们将深入探讨大数据与物联网(IoT)整合的重要性及其在现代科技中的应用。物联网通过连接大量智能设备,生成海量数据;而大数据技术则赋予我们从这些数据中提取有价值信息的能力。当两者结合在一起时,能够为各行各业带来革命性的变化,推动智能时代的到来。一、大数据与物联网的基本概念1.物联网(IoT)物
- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- 使用Python构建去中心化社交网络:打破信息垄断的新思维
Echo_Wish
Python!实战!python去中心化网络
使用Python构建去中心化社交网络:打破信息垄断的新思维大家好,我是你们的技术伙伴Echo_Wish。今天,我们来探讨如何使用Python构建一个去中心化的社交网络。在这个以数据为王的时代,中心化平台掌控着大量用户数据,这不仅对隐私保护带来挑战,也容易形成信息垄断。而去中心化的社交网络,通过分布式技术,将数据的控制权交还用户,打破信息垄断,提升隐私安全性。本文将详细介绍如何使用Python实现这
- 集团公司数字化转型及数据资源中心建设方案:蓝图规划、总体流程、数据模型设计、数据区定位与数据模型设计流程、基础区数据模型设计、用户标签数据模型设计、数据开发体系框架、数据统一调度管理、ETL调度平台
数智化领地
数字化转型数据治理主数据数据仓库etl数据仓库
集团公司数字化转型及数据资源中心建设方案集团公司数字化转型及数据资源中心建设方案蓝图规划数字化转型战略目标数据资源中心定位与功能整体架构与技术选型实施路径与时间表总体流程业务流程梳理与优化数据流程规划与设计技术实施步骤与要点风险评估与应对措施数据模型设计概念数据模型构建逻辑数据模型转换物理数据模型实现模型验证与优化方法数据区定位与数据模型设计流程数据区划分原则及策略各类数据区功能定义数据模型设计流
- python数据集_保存和使用python绘制多个数据集
weixin_39640085
python数据集
Iraninonemoreproblem-Ihavemultiplefileswiththefollowingformat:FreqAB10001.20.00141001.20.00013101.20.0012allfilesareinthesamefolder;uptonowIamabletoreadallfiles,dothecalculationsIwant,andthensaveonela
- 深入理解Kettle:ETL工具的学习与实践
未知方程 无解
本文还有配套的精品资源,点击获取简介:Kettle(Spoon)是Pentaho公司开发的开源ETL工具,用于数据整合和数据仓库建设。本学习笔记着重于Kettle的核心——转换引擎,详细探讨其数据处理的各个步骤,包括数据的输入、转换、输出以及工作原理,提供了一系列的学习资源和实践操作指南,旨在帮助学习者深入理解并掌握Kettle的转换引擎,从而提升数据处理能力。1.Kettle(Spoon)简介与
- c语言共用体变量赋值,(C语言)共用体union的用法举例
王麑
c语言共用体变量赋值
以前在学校学习C语言的时候一直搞不懂那个共用体union有什么用的。工作之后才发现它的一些妙用,现举例如下:1.为了方便看懂代码。比如说想写一个3*3的矩阵,可以这样写:[注:下面用红色部分标记的地方是后来添加上去的,谢谢yrqing718的提醒!]structMatrix{union{struct{float_f11,_f12,_f13,_f21,_f22,_f23,_f31,_f32,_f33
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
一个处女座的程序猿
NLP/LLMs成长书屋大语言模型unslothLLaMA-3LoRA
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集【instruction-input-output】实现CLI方式/GUI傻瓜可视化方式,进配置微调→参数行LoRA指令微调→模型推
- 数据集/API 笔记:湿球黑球温度(WBGT)观测数据
UQI-LIUWJ
数据集笔记
data.gov.sgWBGT是一个综合指标,考虑了气温、湿度、风速和太阳辐射,与气温不同。报告的WBGT是过去15分钟内的平均值,每15分钟更新一次。API调用curl--requestGET\--urlhttps://api-open.data.gov.sg/v2/real-time/api/weather调用结果
- 数据集/API 笔记:新加坡最新的停车场可用车位信息 & 停车场信息
UQI-LIUWJ
笔记
数据每分钟更新一次使用date_time参数可获取特定时间点的最新停车场可用车位信息调用接口curl--requestGET\--urlhttps://api.data.gov.sg/v1/transport/carpark-availability调用结果API返回的查询时间"2025-03-04T09:10:36+08:00"代表的是API查询的时间,但每个停车场的update_datetim
- PCL 最小二乘拟合空间曲线
点云侠
点云进阶算法c++计算机视觉3d开发语言
目录一、曲线拟合1、算法原理2、参考文献二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。博客长期更新,最近一次更新时间为:2024年7月14日。①代码在PCL1.14.1中运行;②完善代码;③新增标准测试数据一、曲线拟合1、算法原理 电力线三维重建指将提取得到的单根电力线进行精确矢量化。在理想情况下,
- 分布式基本理论 - CAP,BASE 和 RAFT 算法
Yellow明
算法分布式
分布式基本理论-CAP,BASE和RAFT算法1.分布式基本理论1.1CAP理论在理论计算机科学中,CAP定理(CAPtheorem),又被称作布鲁尔定理(Brewer’stheorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:[1][2]一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)可用性(Availability)(每次请求都能获取到非错的响应—
- Python数据可视化 Pyecharts 制作 Scatter3D 3D散点图
Mr数据杨
Python数据可视化数据可视化python数据分析echarts
三维散点图是展示具有三个维度数据的有效工具,通过对数据点在三维空间中的分布进行可视化,可以直观地观察数据间的关系与趋势。借助pyecharts库的Scatter3D类,用户能够快速生成3D散点图,并自定义图表的各项参数,使图表更加符合展示需求。结合强大的视觉映射和交互功能,三维散点图不仅提升了数据分析的精度,还增强了用户与数据之间的互动性。文章目录Scatter3D:3D散点图Demo总结Scat
- 存储性能调优:掌握I/O性能调优和缓存策略配置
Morris只会敲命令
缓存
引言在数字化转型加速的今天,数据已成为企业核心资产,而存储系统的性能直接影响业务响应速度、用户体验和IT基础设施的总体效率。无论是高并发交易系统、实时分析平台,还是AI训练场景,存储I/O瓶颈和缓存策略配置不当都可能引发性能雪崩。本文将从硬件层到软件层,系统性地解析存储性能调优的核心技术,并提供可落地的优化策略。1.1存储介质特性与选型HDDvs.SSDvs.NVMeHDD的机械寻道延迟(平均5-
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- DeepSeek本地部署教程(Windows操作系统笔记本电脑适用)
程序员辣条
AI产品经理产品经理大模型人工智能DeepSeekWindowsAI大模型
最近DeepSeek非常火,你想不想也本地部署,玩转AI呢?一、将DeepSeek部署到自己的电脑有以下好处:1.数据隐私与安全本地存储:所有数据保存在本地,避免第三方服务器存储带来的隐私风险。数据控制:完全掌控数据访问权限,防止未经授权的访问或泄露。2.性能优化低延迟:本地运行减少网络延迟,响应速度更快。资源利用:可根据硬件配置优化性能,充分利用本地计算资源。3.定制化灵活配置:可根据需求调整模
- java.util中的Scanner类
鼬猿
java开发语言intellij-idea
Scanner类可以用于从各种来源(如标准输入、文件、字符串等)读取不同类型的数据。它提供了各种方法来解析和提取输入的数据,并将其转换为相应的数据类型。在使用Scanner之前,需要先通过import语句导入java.util.Scanner类。创建了一个Scanner对象并传入System.in作为输入源,表示从标准输入中读取数据。例:Scanner变量名=newScanner(System.i
- 获取视频第一帧兼容ios
小政爱学习!
音视频ios
js封装:/***获取视频第一帧的方法,并将画面转换成base64格式*@param{String}url视频的URL,可以是base64格式*@return{Promise}一个Promise对象,返回值为视频第一帧的base64数据*/exportfunctiongetVideoBase64(url){returnnewPromise((resolve,reject)=>{//创建video元
- 最硬核DNS详解
运维开发那些事
linuxlinux
1、是什么DNS(域名系统)是互联网的一项服务,它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS协议基于UDP协议,使用端口号53。2、域名服务器类型域名服务器在DNS体系中扮演着不同的角色,根据其功能和位置可以分为几种类型。以下是主要的域名服务器类型:根域名服务器:根域名服务器是DNS层次结构的最高层,它们并不直接提供具体的域名解析结果,而是指引查询到正确的顶
- 百望股份全面接入DeepSeek,打造企业级AGI革新引擎
kejicaijinghui
agi人工智能microsoft
近日,百望股份宣布全面接入DeepSeek大模型,通过将DeepSeek集成至数智商业平台,为企业提供AI驱动的数据综合服务。这不仅标志着百望股份在AI技术应用领域的重大突破,更预示着企业财税数字化转型即将迎来奇点。 五大场景升级,打造智能化产品矩阵 作为港股财税数字化解决方案第一股,百望股份凭借在企业服务领域的深厚积累,已成功为超过2000家大型企业集团、2300万家成长型企业提供全方位的数
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理