1 Overview
Bloom filter最早由 Burton Howard Bloom提出,是一种用于判断成员是否存在于某个集合中的数据结构。 Bloom filter的判断基于概率论:
Bloom filter通常被实现为一个包含 m 位的位数组(bit array),所有位的初始值都为0。 Bloom filter支持以下两种类型的操作:
如果query的结果为真(即positive),那么实际上存在以下两种可能性:
传统的Bloom filter 不支持从集合中删除成员。对于每个添加到Bloom filter中的成员,实际上将其位数组中的 k 位设置为1。尽管将这些位重置为0可以保证从Bloom filter中删除该成员,但是这样做的副作用是可能会影响某些其它成员,因为其它成员也可能被映射到这些被重置为0的位中的一位或者多位, 从而最终导致false negatives。对于Bloom filter而言,false negatives是不被允许的。 Counting Bloom filter由于采用了计数,因此支持remove操作。
Bloom filter 使用的 k 个index functions,有时也被称为hash functions,它们通常被假定为彼此独立,返回值在可能的取值范围内均匀分布(这是以下一系列数学证明的基础)。
2 The Math
Bloom filter的基本概念并不复杂,接下来分析一下query操作对某个未被添加的成员返回positive(即false positive)的概率:
假设p是位数组中某一位为1的概率, 那么false positive的概率是 pk 。如果n是已经添加到Bloom filter中的成员个数,那么 p = 1 – (1 – 1/m)nk,经过一系列推导得到 p ≈ ( 1 – e-kn/m ) k , 当 k = m / n * ln2 时(ln 即 loge ),p为最小值。 例如当k = 8, m/n = 10时, false positive的理论值为0.00846。以下是段计算false positive的实例代码:
public static double calculateFalsePositiveProbability(int k, int m, int n) { return Math.pow((1 - Math.exp(-k * (double) n / (double) m)), k); }
对于某些应用而言,false positive的概率已经是一个足够好的判断Bloom filter准确性的指标,Peter C.Dillinger 和 Panagiotis Manolios 在其Bloom Filters in Probablistic Verfification的论文中指出,对于query过程中的不确定性, state omission 是一个更合适的指标。建议感兴趣的读者阅读该论文,顺便也可以复习一下相关的数学知识。
3 Refinement
So far, so good。 跟普通的HashMap相比, Bloom filter不需要在内存中保存key和value, 而是位数组中的若干个位即可,这在内存使用上是个巨大的节省,当然前提是能容忍一定概率的false positives。但是传统的Bloom filter存在以下两个严重的缺陷:
Peter C.Dillinger 和 Panagiotis Manolios在其论文中指出,fingerprinting Bloom filter可以有效地减少索引函数的个数,并且对准确性的影响可以小到忽略。这对于传统的Bloom filter来说,是个重大的改进。笔者使用了其中介绍的triple hashing,认为效果比较明显。
4 Implementation
如果Google以Java实现的Bloom filter, java-bloomfilter 可能是最容易找到的实现之一。它采用的是传统的Bloom filter算法:使用的 k 个索引函数(默认都是MD5),只是索引函数在进行计算时对参数的加盐(salting)不同而已。笔者认为 java-bloomfilter 的性能可能有待提升。
Hadoop common的util包中也提供了一个Bloom Filter的实现,此外其hash包还提供了JenkinsHash 和 MurmurHash 两个Hash算法。笔者感觉Hadoop 的Bloom filter的实现方式类似fingerprinting Bloom filter,但是没有使用double hashing 或者tripple hashing。
此外关于位数组的实现方式,可能最直接想法的是使用java.util.BitSet。不过笔者认为如果处理的数据量很大、或者性能要求比较高,那么不建议使用java.util.BitSet, 因为java.util.BitSet的内存使用方式、总体性能都不是很理想。
5 Reference