Android内核解读-Android系统的开机启动过程

转载请注明出处:http://blog.csdn.net/singwhatiwanna/article/details/19302593

前言

当长按手机的power键,Android手机就会开机,那么Android系统的开机启动过程到底是怎么样的呢,本文将要介绍这一过程。简单来说,Android系统的开机启动过程大致是这样的:首先linux系统会启动一个叫做zygote(可以称为受精卵、母体)的linux程序,这个程序实际上就是android系统的内核,zygote启动的时候会建立socket服务端并加载大量的类和资源。接着zygote会孵化第一个dalvik进程SystemServer,在SystemServer中会创建一个socket客户端,后续AMS(ActivityManagerService)会通过此客户端和zygote通信,zygote再根据请求孵化出新的dalvik进程即启动一个新的apk同时把新进程的socket连接关闭。SystemServer初始化完毕后会启动一个位于桟顶的activity,由于系统刚开机,所以task桟顶没有activity,于是接着它会发送一个隐式的intent(category:CATEGORY_HOME),也就是launcher了,即Android系统的桌面程序,launcher启动以后,我们就可以通过桌面启动各种应用了,可以发现,launcher可以有多个,第三方应用只要加入launcher所需要的intent-filter即可。下面一一分析各个流程。(注:本文分析基于Android4.3源码)

zygote的启动过程

zygote是一个linux程序,其对应的可执行文件位于/system/bin/app_process,它在/init.rc中定义,如下

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class main
socket zygote stream 660 root system
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart media
onrestart restart netd

可以发现,zygote创建了一个流式套接字(即采用TCP协议),并监听660端口,并且当zygote重启的时候需要对唤醒电源并重启Media、netd服务。下面看zygote的源码,其路径为frameworks\base\cmds\app_process\app_main.cpp中:

int main(int argc, char* const argv[])
{
#ifdef __arm__
    /*
     * b/7188322 - Temporarily revert to the compat memory layout
     * to avoid breaking third party apps.
     *
     * THIS WILL GO AWAY IN A FUTURE ANDROID RELEASE.
     *
     * http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7dbaa466
     * changes the kernel mapping from bottom up to top-down.
     * This breaks some programs which improperly embed
     * an out of date copy of Android's linker.
     */
    char value[PROPERTY_VALUE_MAX];
    property_get("ro.kernel.qemu", value, "");
    bool is_qemu = (strcmp(value, "1") == 0);
    if ((getenv("NO_ADDR_COMPAT_LAYOUT_FIXUP") == NULL) && !is_qemu) {
        int current = personality(0xFFFFFFFF);
        if ((current & ADDR_COMPAT_LAYOUT) == 0) {
            personality(current | ADDR_COMPAT_LAYOUT);
            setenv("NO_ADDR_COMPAT_LAYOUT_FIXUP", "1", 1);
            execv("/system/bin/app_process", argv);
            return -1;
        }
    }
    unsetenv("NO_ADDR_COMPAT_LAYOUT_FIXUP");
#endif

    // These are global variables in ProcessState.cpp
    mArgC = argc;
    mArgV = argv;

    mArgLen = 0;
    for (int i=0; i<argc; i++) {
        mArgLen += strlen(argv[i]) + 1;
    }
    mArgLen--;
	//注意,这里持有了一个AppRuntime对象,其继承自AndroidRuntime
    AppRuntime runtime;
    const char* argv0 = argv[0];

    // Process command line arguments
    // ignore argv[0]
    argc--;
    argv++;

    // Everything up to '--' or first non '-' arg goes to the vm

    int i = runtime.addVmArguments(argc, argv);

    // Parse runtime arguments.  Stop at first unrecognized option.
    bool zygote = false;
    bool startSystemServer = false;
    bool application = false;
    const char* parentDir = NULL;
    const char* niceName = NULL;
    const char* className = NULL;
	//这里是解析init.rc中定义的zygote的启动参数
    while (i < argc) {
        const char* arg = argv[i++];
        if (!parentDir) {
            parentDir = arg;
        } else if (strcmp(arg, "--zygote") == 0) {
            zygote = true;
            niceName = "zygote";
        } else if (strcmp(arg, "--start-system-server") == 0) {
            startSystemServer = true;
        } else if (strcmp(arg, "--application") == 0) {
            application = true;
        } else if (strncmp(arg, "--nice-name=", 12) == 0) {
            niceName = arg + 12;
        } else {
            className = arg;
            break;
        }
    }

    if (niceName && *niceName) {
        setArgv0(argv0, niceName);
        set_process_name(niceName);
    }

    runtime.mParentDir = parentDir;

    if (zygote) {
		//从init.rc中的定义可以看出,zygote为true,startSystemServer也为true
		//最终这里会调用ZygoteInit的main方法
        runtime.start("com.android.internal.os.ZygoteInit",
                startSystemServer ? "start-system-server" : "");
    } else if (className) {
        // Remainder of args get passed to startup class main()
        runtime.mClassName = className;
        runtime.mArgC = argc - i;
        runtime.mArgV = argv + i;
        runtime.start("com.android.internal.os.RuntimeInit",
                application ? "application" : "tool");
    } else {
        fprintf(stderr, "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
        return 10;
    }
}

说明:这句代码runtime.start("com.android.internal.os.ZygoteInit",startSystemServer ? "start-system-server" : "")在AndroidRuntime中实现,其最终会调用ZygoteInit的main方法,请看env->CallStaticVoidMethod(startClass, startMeth, strArray);这里的startClass就是com.android.internal.os.ZygoteInit,而startMeth就是main,所以,我们直接看ZygoteInit的main方法,代码路径为:frameworks\base\core\java\com\android\internal\os\ZygoteInit.java:

public static void main(String argv[]) {
	try {
		// Start profiling the zygote initialization.
		SamplingProfilerIntegration.start();
		//这里注册流式socket,以便于fork新的dalvik进程
		registerZygoteSocket();
		EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
			SystemClock.uptimeMillis());
		//这里预先加载一些类和资源
		preload();
		EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
			SystemClock.uptimeMillis());

		// Finish profiling the zygote initialization.
		SamplingProfilerIntegration.writeZygoteSnapshot();

		// Do an initial gc to clean up after startup
		gc();

		// Disable tracing so that forked processes do not inherit stale tracing tags from
		// Zygote.
		Trace.setTracingEnabled(false);

		// If requested, start system server directly from Zygote
		if (argv.length != 2) {
			throw new RuntimeException(argv[0] + USAGE_STRING);
		}

		if (argv[1].equals("start-system-server")) {
			//启动SystemServer,zygote通过SystemServer和上层服务进行交互
			startSystemServer();
		} else if (!argv[1].equals("")) {
			throw new RuntimeException(argv[0] + USAGE_STRING);
		}

		Log.i(TAG, "Accepting command socket connections");
		//通过Select方式监听端口,即异步读取消息,死循环,没有消息则一直阻塞在那里
		runSelectLoop();

		closeServerSocket();
	} catch (MethodAndArgsCaller caller) {
		caller.run();
	} catch (RuntimeException ex) {
		Log.e(TAG, "Zygote died with exception", ex);
		closeServerSocket();
		throw ex;
	}
}

下面看一下runSelectLoop方法,看看它是如何fork产生一个新的进程的:

/**
 * Runs the zygote process's select loop. Accepts new connections as
 * they happen, and reads commands from connections one spawn-request's
 * worth at a time.
 *
 * @throws MethodAndArgsCaller in a child process when a main() should
 * be executed.
 */
private static void runSelectLoop() throws MethodAndArgsCaller {
	ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
	ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
	FileDescriptor[] fdArray = new FileDescriptor[4];

	fds.add(sServerSocket.getFileDescriptor());
	peers.add(null);

	int loopCount = GC_LOOP_COUNT;
	//死循环,没有消息则一直阻塞在这里
	while (true) {
		int index;

		/*
		 * Call gc() before we block in select().
		 * It's work that has to be done anyway, and it's better
		 * to avoid making every child do it.  It will also
		 * madvise() any free memory as a side-effect.
		 *
		 * Don't call it every time, because walking the entire
		 * heap is a lot of overhead to free a few hundred bytes.
		 */
		if (loopCount <= 0) {
			gc();
			loopCount = GC_LOOP_COUNT;
		} else {
			loopCount--;
		}


		try {
			fdArray = fds.toArray(fdArray);
			//通过select()函数来读取新的socket消息,其返回值有<0、0、>0三种
			//分别代表:发生异常、继续读取新消息、首先处理当前消息
			index = selectReadable(fdArray);
		} catch (IOException ex) {
			throw new RuntimeException("Error in select()", ex);
		}

		if (index < 0) {
			throw new RuntimeException("Error in select()");
		} else if (index == 0) {
			//构造一个ZygoteConnection对象,并将其加入到peers列表中
			ZygoteConnection newPeer = acceptCommandPeer();
			peers.add(newPeer);
			fds.add(newPeer.getFileDesciptor());
		} else {
			boolean done;
			//这里处理当前socket消息,ZygoteConnection的runOnce会被调用,一个新的dalvik进程会被创建
			done = peers.get(index).runOnce();

			if (done) {
				//处理完了以后删除此socket消息
				peers.remove(index);
				fds.remove(index);
			}
		}
	}
}

接着,我们还需要看下ZygoteConnection的runOnce方法,看看一个dalvik进程到底是如何产生的,我们知道每个apk都运行在一个独立的dalvik进程中,所以当启动一个apk的时候,zygote会孵化出一个新的进程,在这个进程中运行此apk。在ZygoteConnection中,新进程是通过Zygote的静态方法forkAndSpecialize来产生的:

pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid, parsedArgs.gids,
parsedArgs.debugFlags, rlimits, parsedArgs.mountExternal, parsedArgs.seInfo, parsedArgs.niceName);

具体的我们就不用多看了,内部肯定是通过linux系统的fork()函数来产生一个新进程的。当一个新的dalvik进程产生了以后,还需要做一些清场的工作,由于新进程是由zygote程序fork出来的,所以子进程具有zygote的一份拷贝,我们知道,zygote启动的时候创建了一个socket服务端,这个服务端只能有一个,由zygote孵化的子进程是不应该有的,所以子进程孵化出来以后,还必须关闭拷贝的socket服务端,这些操作在handleChildProc方法中完成:

private void handleChildProc(Arguments parsedArgs,
		FileDescriptor[] descriptors, FileDescriptor pipeFd, PrintStream newStderr)
		throws ZygoteInit.MethodAndArgsCaller {
	//关闭本地和服务端(如果有)的socket
	closeSocket();
	ZygoteInit.closeServerSocket();

	if (descriptors != null) {
		try {
			ZygoteInit.reopenStdio(descriptors[0],
					descriptors[1], descriptors[2]);

			for (FileDescriptor fd: descriptors) {
				IoUtils.closeQuietly(fd);
			}
			newStderr = System.err;
		} catch (IOException ex) {
			Log.e(TAG, "Error reopening stdio", ex);
		}
	}

	if (parsedArgs.niceName != null) {
		Process.setArgV0(parsedArgs.niceName);
	}

	if (parsedArgs.runtimeInit) {
		if (parsedArgs.invokeWith != null) {
			WrapperInit.execApplication(parsedArgs.invokeWith,
					parsedArgs.niceName, parsedArgs.targetSdkVersion,
					pipeFd, parsedArgs.remainingArgs);
		} else {
			RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion,
					parsedArgs.remainingArgs);
		}
	} else {
		String className;
		try {
			className = parsedArgs.remainingArgs[0];
		} catch (ArrayIndexOutOfBoundsException ex) {
			logAndPrintError(newStderr,
					"Missing required class name argument", null);
			return;
		}

		String[] mainArgs = new String[parsedArgs.remainingArgs.length - 1];
		System.arraycopy(parsedArgs.remainingArgs, 1,
				mainArgs, 0, mainArgs.length);

		if (parsedArgs.invokeWith != null) {
			WrapperInit.execStandalone(parsedArgs.invokeWith,
					parsedArgs.classpath, className, mainArgs);
		} else {
			ClassLoader cloader;
			if (parsedArgs.classpath != null) {
				cloader = new PathClassLoader(parsedArgs.classpath,
						ClassLoader.getSystemClassLoader());
			} else {
				cloader = ClassLoader.getSystemClassLoader();
			}

			try {
				//这里子进程的main方法被调用,此时,子进程完全从zygote(母体)上脱离出来了
				ZygoteInit.invokeStaticMain(cloader, className, mainArgs);
			} catch (RuntimeException ex) {
				logAndPrintError(newStderr, "Error starting.", ex);
			}
		}
	}
}

同时在ZygoteInit中会预先加载一些类和资源,具体代码在preload方法中:

static void preload() {
preloadClasses();
preloadResources();
}

SystemServer的创建

SystemServer作为zygote孵化的第一个dalvik进程,其孵化过程在上面已经进行了描述,但是其和普通进程的启动略有不同,普通进程由Zygote.forkAndSpecialize来启动,而SystemServer由Zygote.forkSystemServer来启动,其次是SystemServer内部多创建了一个socket客户端。关于SystemServer内部的本地socket客户端,本文前面已经说过,外围的Service都是通过SystemServer和zygote交互的,比如要启动一个apk,首先AMS会发起一个新进程的创建请求,在startProcessLocked方法中会调用Process的start方法,其内部会调用startViaZygote方法,而在startViaZygote内部会创建一个本地socket和zygote通信,我们要知道,AMS是在SystemServer进程中创建的,所以说在SystemServer中创建一个本地socket和zygote通信是有道理的。SystemServer的一个很重要的作用是创建各种服务,包括大家常见的WindowManagerService、AlarmManagerService、ActivityManagerService等,然后上层的各种manager通过binder和service进行交互,关于SystemServer创建各种服务的过程以及和binder的交互,请参考我之前写的一篇博客的其中一节,这里就不重复了:各种Manager和Binder服务的对应关系

系统桌面的启动

当SystemServer创建各种服务完毕后,其中的一个服务ActivityManagerService由于也创建完成,所以其事件回调方法systemReady会被调用,这个方法很长,注意到在这个方法的倒数第二句是mMainStack.resumeTopActivityLocked(null),它的意思是将桟顶的activity复位,看它的代码
final boolean resumeTopActivityLocked(ActivityRecord prev, Bundle options) {
	// Find the first activity that is not finishing.
	//找到桟顶的activity记录
	ActivityRecord next = topRunningActivityLocked(null);

	// Remember how we'll process this pause/resume situation, and ensure
	// that the state is reset however we wind up proceeding.
	final boolean userLeaving = mUserLeaving;
	mUserLeaving = false;
	//由于系统刚启动,桟顶肯定没有activity,所以next为null
	if (next == null) {
		// There are no more activities!  Let's just start up the
		// Launcher...
		if (mMainStack) {
			ActivityOptions.abort(options);
			//程序执行到这里,桌面就会被调起来
			return mService.startHomeActivityLocked(mCurrentUser);
		}
	}
	...此处省略
}

最后看看桌面是如何被调起来的:

boolean startHomeActivityLocked(int userId) {
	if (mHeadless) {
		// Added because none of the other calls to ensureBootCompleted seem to fire
		// when running headless.
		ensureBootCompleted();
		return false;
	}

	if (mFactoryTest == SystemServer.FACTORY_TEST_LOW_LEVEL
			&& mTopAction == null) {
		// We are running in factory test mode, but unable to find
		// the factory test app, so just sit around displaying the
		// error message and don't try to start anything.
		return false;
	}
	Intent intent = new Intent(
		mTopAction,
		mTopData != null ? Uri.parse(mTopData) : null);
	intent.setComponent(mTopComponent);
	if (mFactoryTest != SystemServer.FACTORY_TEST_LOW_LEVEL) {
		//其实就是为intent加上CATEGORY_HOME这个Category,接着就发送隐式intent来调起所有满足条件的桌面
		//这也是第三方桌面存在的价值
		intent.addCategory(Intent.CATEGORY_HOME);
	}
	ActivityInfo aInfo =
		resolveActivityInfo(intent, STOCK_PM_FLAGS, userId);
	if (aInfo != null) {
		intent.setComponent(new ComponentName(
				aInfo.applicationInfo.packageName, aInfo.name));
		// Don't do this if the home app is currently being
		// instrumented.
		aInfo = new ActivityInfo(aInfo);
		aInfo.applicationInfo = getAppInfoForUser(aInfo.applicationInfo, userId);
		ProcessRecord app = getProcessRecordLocked(aInfo.processName,
				aInfo.applicationInfo.uid);
		if (app == null || app.instrumentationClass == null) {
			intent.setFlags(intent.getFlags() | Intent.FLAG_ACTIVITY_NEW_TASK);
			//这里启动桌面activity,到此为止,桌面被启动了,我们就可以认为手机开机完成了
			mMainStack.startActivityLocked(null, intent, null, aInfo,
					null, null, 0, 0, 0, null, 0, null, false, null);
		}
	}

	return true;
}

到此为止,桌面已经启动了,也就意味着手机的开机启动过程已经完成,后续我们就可以通过桌面来启动各个应用了,根据本文的介绍,我们已经知道apk启动时dalvik进程的创建过程,关于单个activity的启动过程,请参看我之前写的另一篇文章Android源码分析-Activity的启动过程。到此为止,本文结束了,相信大家对Android系统的开机启动过程应该有了一个感性的认识了。

你可能感兴趣的:(android)