- 从理论到实践:零拷贝技术的全面解读
超越不平凡
Java基础Java零拷贝
目录一、I/O工作方式1.1DMA二、零拷贝2.1传统数据拷贝2.2Java应用数据处理2.3.零拷贝流程三、零拷贝案例四、总结一、I/O工作方式磁盘可以说是计算机系统中最慢的硬件之一,读写速度相差内存10倍以上,所以针对磁盘的优化技术非常多。下面以文件传输为切入线分析I/O的工作方式。在没有DMA技术前,I/O是这样工作的,如下图:用户发起read调用,CPU将对应的指令给磁盘控制器,然后返回;
- 芯片时钟树结构(H-tree,Fishbone,FlexH,Mesh等)的对比、应用实例及未来趋势
赛卡
人工智能服务器云计算边缘计算
引言在先进制程芯片设计中,时钟树综合(ClockTreeSynthesis,CTS)的优化程度直接影响芯片的时序收敛、功耗分布和面积利用率。随着工艺节点演进至5nm及以下,时钟网络的复杂性和设计约束呈现指数级增长。本文将深入解析H-tree、Fishbone、FlexHtree及Clockmesh四种主流时钟树结构的技术特性,结合服务器芯片、GPU及AI芯片的实战案例,并探讨主流EDA工具对CTS
- 高安全可靠CAN FD芯片ASM1042的技术特性与应用前景
国科安芯
产品单片机嵌入式硬件架构fpga开发
1.ASM1042简介ASM1042是国科安芯推出的一款高性能CANFD(CANwithFlexibleData-Rate)收发器芯片,专为高可靠性场景设计。该芯片基于ISO11898-2:2016和ISO11898-5:2007物理层标准开发,支持最高5Mbps的数据传输速率,适用于汽车、航天、军工及工业控制等领域。其核心特性包括:高耐压设计:总线保护电压最高达±70V(H型号),共模输入电压范
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- micropython入门指南电子版_MicroPython入门指南
EchiTie
Python是一种脚本语言,是一款非常容易使用的脚本语言,语法简介、使用简单、功能强大、容易扩展。有非常多的库可以使用。网络功能和计算功能也很强。方便的和其他语言配合使用。完全开源,受到原来越多的开发者青睐。不过由于受到硬件成本、运行性能、开发习惯等原因。没有在通用嵌入式方面得到太多应用。所以microPython应运而生。MicroPython可以在多种嵌入式硬件平台上运行,目前已经有STM32
- 亚马逊测评自养号IP重要性
全哥聊跨境 zcwz-008
服务器网络运维
大家好我是测评全哥,今天我给大家讲一下做亚马逊测评项目需要用到的防关联、防封号环境的一些底层技术原理。这里讲的内容我相信很少有人能掌握,都是一些比较难的IP技术。如果你现在准备开始做测评是在了解阶段还是已经在做测评工作室了。这里给大家讲的内容可以马上看一下,你们的环境是不是100%的安全,是不是容易出现莫名被封号或者被砍单的现象,如果做不到,那尽早的放弃吧,即使你花了1万块钱买的设备,也不要觉得可
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 做亚马逊、temu、速卖通、希音自养号采购砍单率过高需要怎么解决
刘哥测评技术zcwz626
经验分享网络协议网络安全服务器
做无货源模式的卖家越来越多,自养买家号采购时遭遇大砍单是一个普遍而棘手的问题。为了避免这一问题,需要从技术环境搭建、账号权重养成以及下单技巧等多个方面进行系统化操作。以下是一些具体的建议和策略:一、技术环境搭建:确保账号独立性1.硬件隔离:使用独立设备或采用云服务器等隔离技术,确保每个账号拥有唯一的硬件标识,如IMEI、MAC地址等。在同一设备上登录多个账号要确保每个账号都是独立的环境,以防止硬件
- 同花顺软件中的哪些功能可以帮助投资者更好地分析市场?
股票量化
量化投资量化交易程序化交易量化交易python量化炒股券商接口QMT量化投资PTrade
推荐阅读:《【最全攻略】券商交易接口API申请:从数据获取到下单执行》同花顺软件中的哪些功能可以帮助投资者更好地分析市场?在股票市场中,投资者需要借助各种工具和功能来分析市场趋势、评估股票价值和制定投资策略。同花顺软件作为中国领先的金融信息服务提供商之一,提供了丰富的功能来帮助投资者更好地分析市场。本文将详细介绍同花顺软件中的一些核心功能,以及如何利用这些功能来提高投资决策的质量。1.实时行情查看
- 线路板打样中的PCB拼版技术如何为中小企业节省30%以上成本?
捷配科技
制造pcb工艺捷配
线路板打样和批量生产的成本控制对中小企业来说非常关键,本文将解析PCB拼版的五大核心价值,揭示中小企业在SMT贴片环节的降本秘诀。一、破解线路板打样的成本困局中小企业在小批量生产时常面临两难选择:单独加工导致设备利用率低下,而传统拼版方案又存在设计缺陷。二、PCB拼版技术的五大降本优势1.设备利用效率倍增通过二合一或四合一拼版设计,SMT产线单次印刷可完成多板加工。实测数据显示,采用V-CUT拼版
- 验证码识别:使用OCR技术识别图形验证码详解
数据知道
2025年爬虫和逆向教程ocrpython爬虫OCR识别验证码识别图片验证码
文章目录一、基本原理二、所需工具2.1Python环境2.2图像处理库2.3OCR引擎2.4Python接口三、实现步骤3.1获取验证码图像3.2图像预处理3.3使用OCR进行字符识别3.4基本OCR识别样例四、提高识别准确率的方法4.1字符分割4.2使用深度学习模型4.3数据增强4.4集成多个OCR引擎五、实际应用中的注意事项六、总结验证码(CAPTCHA)是一种用于区分人类用户和自动化程序的安
- 2025扩展可能性采购和供应链管理使用AI报告100+份汇总解读|附PDF下载
拓端研究室
百度人工智能
原文链接:https://tecdat.cn/?p=40348在当今快速发展的商业环境中,采购和供应链管理领域正经历着深刻变革,人工智能(AI)技术的融入成为推动这一变革的关键力量。本报告汇总解读聚焦于AI在采购和供应链管理中的应用,深入剖析其发展现状、面临挑战与潜在机遇。通过对大量数据的分析,揭示AI技术在实际应用中的具体表现,如不同行业的采用比例、应用场景等。本报告汇总洞察基于文末135份供应
- 【TOGAF系列】架构开发方法(ADF)第八章
东临碣石82
架构
第8章:D阶段:技术架构8.1目标D阶段的目标是:开发目标技术架构,使架构愿景、目标业务、数据和应用构建块能够通过技术组件和技术服务交付,以解决架构工作说明书和利益相关者关注的问题根据基线和目标技术架构之间的差距确定候选架构路线图组件8.2输入本节定义了阶段D的输入。8.2.1企业外部参考资料架构参考资料(见TOGAF标准——架构内容)候选产品的产品信息8.2.2非架构输入架构工作请求(见TOGA
- DeepSeek 面试题精选
CarlowZJ
DeepSeek
以下是针对DeepSeek面试的精选问题及解答,涵盖技术原理、模型架构、训练方法和应用场景等方面,供面试准备参考:一、DeepSeek模型架构与技术原理1.请简述DeepSeek-V3模型的总体架构和主要创新点。架构:DeepSeek-V3基于混合专家系统(MoE)架构,包含2048个领域专家模型,通过门控网络动态分配查询请求。创新点:使用多头潜在注意力(MLA)技术,通过低秩压缩降低KV缓存需求
- Web组态可视化编辑器 快速绘制组态
2401_88272797
前端编辑器
随着工业智能制造的发展,工业企业对设备可视化、远程运维的需求日趋强烈,传统的单机版组态软件已经不能满足越来越复杂的控制需求,那么实现Web组态可视化界面成为了主要的技术路径。行业痛点对于软件服务商来说,将单机版软件转变为网页版软件已经到了势在必行的阶段。但是,转变是一个复杂的过程,尤其是软件里面的组态功能部分,对于公司或个人都会面临以下几方面的问题:1、无相关组态开发经验,无技术积累。2、开发周期
- 从LayerNorm到RMSNorm:深度学习归一化技术的进化!qwen2.5的技术。
KangkangLoveNLP
qwen2.5深度学习人工智能transformerpytorch自然语言处理python神经网络
RMSNorm(RootMeanSquareNormalization,均方根归一化)是一种用于深度学习的归一化技术,是LayerNorm(层归一化)的一种改进。它通过计算输入数据的均方根(RootMeanSquare,RMS)来进行归一化,避免了传统归一化方法中均值和方差的计算1.LayerNorm(层归一化)LayerNorm(层归一化)是一种用于深度学习的归一化技术,主要用于稳定训练过程、加
- 计算机科学与技术python方向_合肥师范学院计算机科学与技术python复习
weixin_39710106
1.计算机是根据指令操作数据的设备,具备功能性和可编程性两个基本特性2.程序设计语言的执行方式有编译执行和解释执行3.语言特点:与平台无关、粘性扩展、开源理念、支持中文、类库丰富4.IPO程序编写方法:input、process、output5.2.x与3.x的区别:(1)修改编码:3.x系列默认采用UTF-8编码;(2)去掉长整数类型:3.x系列不再区分整数和长整数类型,只有int类型,int类
- 【DuodooTEKr】基于Odoo18 Maintenance设备模块与ZXing扫码技术实现医疗器械DHR无纸化追溯技术方案
邹工转型手札
风吟九宵Odoo18开源Duodoo开源制造人工智能开源物联网python
作者:Odoo技术开发/资深信息化负责人日期:2025年3月10日一、行业现状与需求痛点1.1医疗器械行业DHR管理现状传统纸质记录存在的合规风险FDA21CFRPart11对电子记录的特殊要求生产设备、检验设备、环境监控等多系统数据孤岛1.2典型业务场景分析原材料批次追溯(需关联供应商批号、效期)生产工序执行验证(人员、设备、参数三位一体)灭菌批次与产品追溯的强关联设备维护记录与产品生产周期的对
- MySQL 技术浅析(聚簇索引、UndoLog、RedoLog、MVCC)
代码没写完哪有脸睡觉
mysql数据库
MySQL核心技术深度解析一、聚簇索引与非聚簇索引1.聚簇索引结构存储方式InnoDB中,聚簇索引的叶子节点直接存储完整数据行,数据按主键值物理排序存储。主键索引即数据文件,非叶子节点存储主键范围和子节点指针数据行与主键索引绑定,主键顺序决定磁盘存储顺序示例存储结构B+树结构:根节点→[id20;--索引设计为(name,age)2.事务控制建议控制事务粒度:单个事务执行时间<1秒批量操作分批次提
- RabbitMQ实战(二)-消息持久化策略、事务以及Confirm消息确认方式
Java思享汇
RabbitMQ学习RabbitMQ消息持久化事务confirmack
「扫码关注我,面试、各种技术(mysql、zookeeper、微服务、redis、jvm)持续更新中~」RabbitMQ学习列表:RabbitMQ实战(一)-消息通信基本概念·在上一篇学习完RabbitMQ通信的基本概念后,我们来继续学习消息的持久化以及代码实现RabbitMQ通信。在正常生产环境运维过程中无法避免RabbitMQ服务器重启,那么,如果RabbitMQ重启之后,那些队列和交换器就会
- 【Agent实战】发票信息识别提取专家(AI +OCR技术结合ChatGPT4o能力+结构化prompt(CoT、One-shot等)+Knowledge - RAG+API工具Agent项目实践)
姚瑞南
大模型落地探索及agent搭建RAG技术应用探索prompt实战应用案例人工智能ocrpromptAIGCchatgptgptagi
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录1.项目背景2.项目目标定性:定量:3.发票核心字段概述4.关键举措5.Workflow设计思路及编排5.1整体设计思路5.2流程搭建及解读流程解读:代码节点:解析agent数据
- 卷积神经网络可视化
天行者@
cnn人工智能神经网络
卷积神经网络(CNN)的可视化是理解模型行为、调试性能和解释预测结果的重要工具。以下从技术原理、实现方法和应用场景三个维度,系统梳理CNN可视化的核心技术,并提供代码示例和前沿方向分析:一、CNN可视化的核心维度1.卷积核可视化原理:提取卷积层的权重,将其转换为图像形式,观察滤波器学习到的模式。实现步骤:提取卷积层权重(形状为[out_channels,in_channels,kernel_siz
- 普通人如何利用GPT赚钱之开发虚拟助手
贫苦游商
普通人利用AI搞钱系列gpt人工智能深度学习机器人AIGC
普通人如何利用GPT赚钱之开发虚拟助手随着人工智能技术的迅猛发展,GPT(GenerativePre-trainedTransformer)作为一种强大的语言模型,正在改变我们的生活和工作方式。普通人如何利用GPT赚钱?开发虚拟助手是一个极具潜力的方向。本文将探讨如何开发虚拟助手,以及如何通过这一技术实现经济收益。什么是虚拟助手虚拟助手是一种基于人工智能的技术,能够理解自然语言并执行特定任务。它们
- 多语言环境全支持的面板有哪些?
开源软件
多语言环境全支持的面板有哪些?以Websoft9为例在全球化技术协作与跨国业务部署的背景下,用户对服务器管理工具的跨语言支持需求已从简单的界面翻译,扩展到多语言多环境全支持的深度适配。这一概念不仅要求界面语言的切换能力,更需要覆盖技术部署、本地化服务与区域合规性等多维度需求。本文从技术中立视角,探讨该领域的核心标准与代表性解决方案。一、何为“多语言多环境全支持”?首先了解什么是多语言多环境全支持,
- 南京大学×百度“星河杯”AI大模型创意校园赛正式起航
3月9日,教育部长怀进鹏在十四届全国人大二次会议民生主题记者会上,谈到了人工智能+教育的重要性。他强调,要把人工智能技术深入到教育教学和管理的全过程和全环节,研究其有效性和适应性,让青年一代更加主动地学习,让教师更加创造性地教学。南京大学早在年初就已经敏锐地洞察到了人工智能的重要性,在新学期工作布置会上,发布了一个前瞻性决策:24年9月面向全体本科新生开设“人工智能通识核心课程体系”,南京大学党委
- 百度官方!打造「大模型全开发周期系列课程」,AI应用开发入门课率先发布!(内含英雄帖)
在这个大模型技术日新月异的时代,AI的潜力正被无限释放,改变着我们的工作和生活方式。你是否渴望成为这场变革的参与者?你是否也想在这个大模型时代中抢占先机?那“学习AI”、“使用AI”、“入局AI”我们真的可以受益吗?学习辅助:将AI使用融入学习当中,依据当前学习情况,整理重点难点,让复习有的放矢,更高效掌握知识点。效率提升:帮助处理繁琐重复的工具,如数据分析师使用AI识别数据中的关键信息,自动整理
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- Spring Boot整合参数校验的技术学习
小码快撩
springboot学习java
引言在软件开发中,数据校验是一个非常重要的环节,它确保了数据的完整性和安全性。SpringBoot作为一款流行的Java框架,提供了非常方便的参数校验功能。本文将详细介绍如何在SpringBoot中整合参数校验,并通过示例代码演示其使用方法。一、依赖管理在SpringBoot中整合参数校验的依赖管理相对简单,因为SpringBoot默认集成了HibernateValidator作为其参数校验的支持
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite